Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 56146 by gunawan last updated on 11/Mar/19

Given complex number  z_1 , z_2 , and z_3  satiesfied z_1 +z_2 +z_3 =0  and ∣z_1 ∣=∣z_2 ∣=∣z_3 ∣=1. Prove that  z_1 ^2 +z_2 ^2 +z_3 ^2 =0

$$\mathrm{Given}\:\mathrm{complex}\:\mathrm{number} \\ $$$${z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{satiesfied}\:{z}_{\mathrm{1}} +{z}_{\mathrm{2}} +{z}_{\mathrm{3}} =\mathrm{0} \\ $$$$\mathrm{and}\:\mid{z}_{\mathrm{1}} \mid=\mid{z}_{\mathrm{2}} \mid=\mid{z}_{\mathrm{3}} \mid=\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$${z}_{\mathrm{1}} ^{\mathrm{2}} +{z}_{\mathrm{2}} ^{\mathrm{2}} +{z}_{\mathrm{3}} ^{\mathrm{2}} =\mathrm{0} \\ $$

Commented by MJS last updated on 11/Mar/19

z_1 , z_2 , z_3  are the solutions of  z^3 =cos 3α +isin 3α  z^3 =e^(3iα)  ⇒ z_1 =e^(iα) ; z_2 =e^(i(α−((2π)/3))) ; z_3 =e^(i(α+((2π)/3)))

$${z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{the}\:\mathrm{solutions}\:\mathrm{of} \\ $$$${z}^{\mathrm{3}} =\mathrm{cos}\:\mathrm{3}\alpha\:+{i}\mathrm{sin}\:\mathrm{3}\alpha \\ $$$${z}^{\mathrm{3}} =\mathrm{e}^{\mathrm{3i}\alpha} \:\Rightarrow\:{z}_{\mathrm{1}} =\mathrm{e}^{\mathrm{i}\alpha} ;\:{z}_{\mathrm{2}} =\mathrm{e}^{\mathrm{i}\left(\alpha−\frac{\mathrm{2}\pi}{\mathrm{3}}\right)} ;\:{z}_{\mathrm{3}} =\mathrm{e}^{\mathrm{i}\left(\alpha+\frac{\mathrm{2}\pi}{\mathrm{3}}\right)} \\ $$

Answered by MJS last updated on 11/Mar/19

we can choose z_3 =1+0i  z_1 =a+bi  z_2 =c+di  (1)  a+c+1=0  (2)  b+d=0  (3)  a^2 +b^2 =1  (4)  c^2 +d^2 =1    (1) ⇒ c=−(a+1)  (2) ⇒ d=−b  (3)  a^2 +b^2 =1  (4)  a^2 +2a+b^2 +1=1  (4)−(3)  2a+1=0 ⇒ a=−(1/2) ⇒ c=−(1/2)  ⇒ b^2 =(3/4) ⇒ b=±((√3)/2) ⇒ d=∓((√3)/2)  ⇒ z_1 =−(1/2)±((√3)/2); z_2 =−(1/2)∓((√3)/2)  ⇒ z_1 ^2 =z_2 ; z_2 ^2 =z_1  ⇒ z_1 ^2 +z_2 ^2 +z_3 ^2 =0  we have got the roots of unity ⇒ for any  given z_3 =cos α +isin α we get  z_(1, 2) =cos (α±((2π)/3)) +isin (α±((2π)/3))  because it′s just a rotation by α  the sum of the squares is zero which can be  shown by adding them and using trigonometric  formulas for additions etc.

$$\mathrm{we}\:\mathrm{can}\:\mathrm{choose}\:{z}_{\mathrm{3}} =\mathrm{1}+\mathrm{0i} \\ $$$${z}_{\mathrm{1}} ={a}+{b}\mathrm{i} \\ $$$${z}_{\mathrm{2}} ={c}+{d}\mathrm{i} \\ $$$$\left(\mathrm{1}\right)\:\:{a}+{c}+\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\:{b}+{d}=\mathrm{0} \\ $$$$\left(\mathrm{3}\right)\:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{1} \\ $$$$\left(\mathrm{4}\right)\:\:{c}^{\mathrm{2}} +{d}^{\mathrm{2}} =\mathrm{1} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\Rightarrow\:{c}=−\left({a}+\mathrm{1}\right) \\ $$$$\left(\mathrm{2}\right)\:\Rightarrow\:{d}=−{b} \\ $$$$\left(\mathrm{3}\right)\:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{1} \\ $$$$\left(\mathrm{4}\right)\:\:{a}^{\mathrm{2}} +\mathrm{2}{a}+{b}^{\mathrm{2}} +\mathrm{1}=\mathrm{1} \\ $$$$\left(\mathrm{4}\right)−\left(\mathrm{3}\right)\:\:\mathrm{2}{a}+\mathrm{1}=\mathrm{0}\:\Rightarrow\:{a}=−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\:{c}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:{b}^{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{4}}\:\Rightarrow\:{b}=\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\Rightarrow\:{d}=\mp\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Rightarrow\:{z}_{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{2}};\:{z}_{\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{2}}\mp\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Rightarrow\:{z}_{\mathrm{1}} ^{\mathrm{2}} ={z}_{\mathrm{2}} ;\:{z}_{\mathrm{2}} ^{\mathrm{2}} ={z}_{\mathrm{1}} \:\Rightarrow\:{z}_{\mathrm{1}} ^{\mathrm{2}} +{z}_{\mathrm{2}} ^{\mathrm{2}} +{z}_{\mathrm{3}} ^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{got}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity}\:\Rightarrow\:\mathrm{for}\:\mathrm{any} \\ $$$$\mathrm{given}\:{z}_{\mathrm{3}} =\mathrm{cos}\:\alpha\:+{i}\mathrm{sin}\:\alpha\:\mathrm{we}\:\mathrm{get} \\ $$$${z}_{\mathrm{1},\:\mathrm{2}} =\mathrm{cos}\:\left(\alpha\pm\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\:+{i}\mathrm{sin}\:\left(\alpha\pm\frac{\mathrm{2}\pi}{\mathrm{3}}\right) \\ $$$$\mathrm{because}\:\mathrm{it}'\mathrm{s}\:\mathrm{just}\:\mathrm{a}\:\mathrm{rotation}\:\mathrm{by}\:\alpha \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{squares}\:\mathrm{is}\:\mathrm{zero}\:\mathrm{which}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{shown}\:\mathrm{by}\:\mathrm{adding}\:\mathrm{them}\:\mathrm{and}\:\mathrm{using}\:\mathrm{trigonometric} \\ $$$$\mathrm{formulas}\:\mathrm{for}\:\mathrm{additions}\:\mathrm{etc}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com