All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 56189 by maxmathsup by imad last updated on 11/Mar/19
letun=∫−∞∞sin(nx2)x2+x+ndx1)calculateun2)findlimn→+∞un3)studytheserieΣun
Commented by maxmathsup by imad last updated on 12/Mar/19
wehaveun=Im(∫−∞+∞einx2x2+x+ndx)letφ(z)=einz2z2+z+npolesofφ?z2+z+n=0→Δ=1−4n=(i4n−1)2⇒therootsarez1=−1+i4n−12andz2=−1−i4n−12⇒φ(z)=einz2(z−z1)(z−z2)residustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=einz12z1−z2=einz12i4n−1butz12=14{1−2i4n−1−4n+1}=14{2−4n−2i4n−1}=12{1−2n−i4n−1}⇒inz2=in2(1−2n−i4n−1}=n24n−1+n(1−2n)2i⇒einz2=en24n−1{cos(n(1−2n)2)+isin(n(1−2n)2)}⇒∫−∞+∞φ(z)dz=2iπ1i4n−1en24n−1{cos(n(1−2n)2)+isin(n(1−2n)2)}⇒un=−2π4n−1en24n−1sin(n(2n−1)2)withnintegrandn⩾1.
2)nolimitfor(un)but∣un∣→+∞3)Σunisadivergentserie.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com