Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 56189 by maxmathsup by imad last updated on 11/Mar/19

let u_n =∫_(−∞) ^∞    ((sin(nx^2 ))/(x^2 +x +n)) dx  1) calculate  u_n   2) find lim_(n→+∞) u_n   3) study the serie Σ u_n

$${let}\:{u}_{{n}} =\int_{−\infty} ^{\infty} \:\:\:\frac{{sin}\left({nx}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} +{x}\:+{n}}\:{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:{u}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{serie}\:\Sigma\:{u}_{{n}} \\ $$

Commented by maxmathsup by imad last updated on 12/Mar/19

we have u_n =Im(∫_(−∞) ^(+∞)   (e^(inx^2 ) /(x^2  +x +n))dx)  let ϕ(z) =(e^(inz^2 ) /(z^2  +z+n)) poles of ϕ?  z^2  +z +n =0 →Δ =1−4n =(i(√(4n−1)))^2  ⇒the roots are   z_1 =((−1+i(√(4n−1)))/2)  and z_2 =((−1−i(√(4n−1)))/2)  ⇒  ϕ(z) =(e^(inz^2 ) /((z−z_1 )(z−z_2 )))   residus theorem give   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,z_1 )  Res(ϕ,z_1 ) =(e^(inz_1 ^2 ) /(z_1 −z_2 )) =(e^(inz_1 ^2 ) /(i(√(4n−1))))  but z_1 ^2  =(1/4){1−2i(√(4n−1))−4n+1}  =(1/4){2−4n −2i(√(4n−1))} =(1/2){1−2n −i(√(4n−1))} ⇒  inz^2  =((in)/2)(1−2n −i(√(4n−1))} =(n/2)(√(4n−1))  +((n(1−2n))/2) i ⇒  e^(inz^2 )  =e^((n/2)(√(4n−1))) {cos(((n(1−2n))/2))+i sin(((n(1−2n))/2))} ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (1/(i(√(4n−1)))) e^((n/2)(√(4n−1))) { cos(((n(1−2n))/2))+i sin(((n(1−2n))/2))} ⇒  u_n =−((2π)/(√(4n−1))) e^((n/2)(√(4n−1))) sin(((n(2n−1))/2))  with n  integr and n≥1 .

$${we}\:{have}\:{u}_{{n}} ={Im}\left(\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{inx}^{\mathrm{2}} } }{{x}^{\mathrm{2}} \:+{x}\:+{n}}{dx}\right)\:\:{let}\:\varphi\left({z}\right)\:=\frac{{e}^{{inz}^{\mathrm{2}} } }{{z}^{\mathrm{2}} \:+{z}+{n}}\:{poles}\:{of}\:\varphi? \\ $$$${z}^{\mathrm{2}} \:+{z}\:+{n}\:=\mathrm{0}\:\rightarrow\Delta\:=\mathrm{1}−\mathrm{4}{n}\:=\left({i}\sqrt{\mathrm{4}{n}−\mathrm{1}}\right)^{\mathrm{2}} \:\Rightarrow{the}\:{roots}\:{are}\: \\ $$$${z}_{\mathrm{1}} =\frac{−\mathrm{1}+{i}\sqrt{\mathrm{4}{n}−\mathrm{1}}}{\mathrm{2}}\:\:{and}\:{z}_{\mathrm{2}} =\frac{−\mathrm{1}−{i}\sqrt{\mathrm{4}{n}−\mathrm{1}}}{\mathrm{2}}\:\:\Rightarrow \\ $$$$\varphi\left({z}\right)\:=\frac{{e}^{{inz}^{\mathrm{2}} } }{\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)}\:\:\:{residus}\:{theorem}\:{give}\: \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{z}_{\mathrm{1}} \right) \\ $$$${Res}\left(\varphi,{z}_{\mathrm{1}} \right)\:=\frac{{e}^{{inz}_{\mathrm{1}} ^{\mathrm{2}} } }{{z}_{\mathrm{1}} −{z}_{\mathrm{2}} }\:=\frac{{e}^{{inz}_{\mathrm{1}} ^{\mathrm{2}} } }{{i}\sqrt{\mathrm{4}{n}−\mathrm{1}}}\:\:{but}\:{z}_{\mathrm{1}} ^{\mathrm{2}} \:=\frac{\mathrm{1}}{\mathrm{4}}\left\{\mathrm{1}−\mathrm{2}{i}\sqrt{\mathrm{4}{n}−\mathrm{1}}−\mathrm{4}{n}+\mathrm{1}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left\{\mathrm{2}−\mathrm{4}{n}\:−\mathrm{2}{i}\sqrt{\mathrm{4}{n}−\mathrm{1}}\right\}\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{1}−\mathrm{2}{n}\:−{i}\sqrt{\mathrm{4}{n}−\mathrm{1}}\right\}\:\Rightarrow \\ $$$${inz}^{\mathrm{2}} \:=\frac{{in}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{2}{n}\:−{i}\sqrt{\mathrm{4}{n}−\mathrm{1}}\right\}\:=\frac{{n}}{\mathrm{2}}\sqrt{\mathrm{4}{n}−\mathrm{1}}\:\:+\frac{{n}\left(\mathrm{1}−\mathrm{2}{n}\right)}{\mathrm{2}}\:{i}\:\Rightarrow \\ $$$${e}^{{inz}^{\mathrm{2}} } \:={e}^{\frac{{n}}{\mathrm{2}}\sqrt{\mathrm{4}{n}−\mathrm{1}}} \left\{{cos}\left(\frac{{n}\left(\mathrm{1}−\mathrm{2}{n}\right)}{\mathrm{2}}\right)+{i}\:{sin}\left(\frac{{n}\left(\mathrm{1}−\mathrm{2}{n}\right)}{\mathrm{2}}\right)\right\}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{\mathrm{1}}{{i}\sqrt{\mathrm{4}{n}−\mathrm{1}}}\:{e}^{\frac{{n}}{\mathrm{2}}\sqrt{\mathrm{4}{n}−\mathrm{1}}} \left\{\:{cos}\left(\frac{{n}\left(\mathrm{1}−\mathrm{2}{n}\right)}{\mathrm{2}}\right)+{i}\:{sin}\left(\frac{{n}\left(\mathrm{1}−\mathrm{2}{n}\right)}{\mathrm{2}}\right)\right\}\:\Rightarrow \\ $$$${u}_{{n}} =−\frac{\mathrm{2}\pi}{\sqrt{\mathrm{4}{n}−\mathrm{1}}}\:{e}^{\frac{{n}}{\mathrm{2}}\sqrt{\mathrm{4}{n}−\mathrm{1}}} {sin}\left(\frac{{n}\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{2}}\right)\:\:{with}\:{n}\:\:{integr}\:{and}\:{n}\geqslant\mathrm{1}\:. \\ $$$$ \\ $$

Commented by maxmathsup by imad last updated on 12/Mar/19

2) no limit for (u_n ) but ∣u_n ∣ →+∞  3) Σ u_n  is a divergent serie .

$$\left.\mathrm{2}\right)\:{no}\:{limit}\:{for}\:\left({u}_{{n}} \right)\:{but}\:\mid{u}_{{n}} \mid\:\rightarrow+\infty \\ $$$$\left.\mathrm{3}\right)\:\Sigma\:{u}_{{n}} \:{is}\:{a}\:{divergent}\:{serie}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com