Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 56229 by Hassen_Timol last updated on 12/Mar/19

How can you prove (not geometrically)  the following?                Σ_(k = 0) ^n k  =  (( n ( n + 1 ) )/2)

Howcanyouprove(notgeometrically)thefollowing?nk=0k=n(n+1)2

Commented by Kunal12588 last updated on 12/Mar/19

Can I use Aritmetic Progression AP sir.

CanIuseAritmeticProgressionAPsir.

Commented by Hassen_Timol last updated on 12/Mar/19

yes Sir please

yesSirplease

Commented by Kunal12588 last updated on 12/Mar/19

Σ_(k=0) ^n k=0+1+2+3+4+...+n  let us write the terms  0,1,2,3,4,5,6,7,...,n  above sequence is in AP  where a=0, d=1  S_r =(r/2)[2a+(r−1)d]  ∴S_(n+1) =(((n+1))/2)[2×0+((n+1)−1)(1)]  ⇒S_(n+1) =((n+1)/2)(0+n×1)=((n(n+1))/2)

nk=0k=0+1+2+3+4+...+nletuswritetheterms0,1,2,3,4,5,6,7,...,nabovesequenceisinAPwherea=0,d=1Sr=r2[2a+(r1)d]Sn+1=(n+1)2[2×0+((n+1)1)(1)]Sn+1=n+12(0+n×1)=n(n+1)2

Commented by maxmathsup by imad last updated on 13/Mar/19

solution by polynome method let p(x)=((x(x−1))/2) we have for all x from R  p(x+1)−p(x)=(((x+1)x)/2) −((x(x−1))/2) =((x^2 +x −x^2  +x)/2) =x ⇒  ∀ k∈[[1,n]] p(k+1)−p(k) =k ⇒Σ_(k=1) ^n {p(k+1)−p(k)}=Σ_(k=1) ^n  k ⇒  Σ_(k=1) ^n k =p(2)−p(1)+p(3)−p(2)+....+p(n+1)−p(n)=p(n+1)−p(1)  =((n(n+1))/2) −0 ⇒ Σ_(k=1) ^n k =((n(n+1))/2) .

solutionbypolynomemethodletp(x)=x(x1)2wehaveforallxfromRp(x+1)p(x)=(x+1)x2x(x1)2=x2+xx2+x2=xk[[1,n]]p(k+1)p(k)=kk=1n{p(k+1)p(k)}=k=1nkk=1nk=p(2)p(1)+p(3)p(2)+....+p(n+1)p(n)=p(n+1)p(1)=n(n+1)20k=1nk=n(n+1)2.

Answered by Prithwish sen last updated on 12/Mar/19

              Σ_(k=0) ^n k = 1+     2       +        3     +............+(n−2)+(n−1)+n   again Σ_(k=0) ^n k = n+(n−1)+(n−2) +.............+      3        +   2       +1        adding 2Σ_(k=0) ^n = (n+1)+(n+1)+....upto n times                           =n(n+1)           ∴ Σ_(k=0) ^n =((n(n+1))/2)   proved

nk=0k=1+2+3+............+(n2)+(n1)+nagainnk=0k=n+(n1)+(n2)+.............+3+2+1adding2nk=0=(n+1)+(n+1)+....uptontimes=n(n+1)nk=0=n(n+1)2proved

Commented by Hassen_Timol last updated on 12/Mar/19

Thank you Sir, God bless you

ThankyouSir,Godblessyou

Answered by Kunal12588 last updated on 12/Mar/19

  S_(n+1) =Σ_(k = 0) ^n k=0+1+2+3+4+...+n        (1)  There are (n+1) terms in above series.  Reversing  S_n  ∵ addition follows commutive  property it does not effect the S_n   S_(n+1) =n+(n−1)+(n−2)+...+0             (2)  adding corresponding terms of (1) and (2)  2S_(n+1) =(0+n)+[1+(n−1)]+[2+(n−2)]+..+(n+0)  there are (n+1) brackets  as you can see every bracket will give us ′n′  2S_(n+1) =n+n+n+n+...(n+1) terms  2S_(n+1) =n(n+1)  S_(n+1) =((n(n+1))/2)

Sn+1=nk=0k=0+1+2+3+4+...+n(1)Thereare(n+1)termsinaboveseries.ReversingSnadditionfollowscommutivepropertyitdoesnoteffecttheSnSn+1=n+(n1)+(n2)+...+0(2)addingcorrespondingtermsof(1)and(2)2Sn+1=(0+n)+[1+(n1)]+[2+(n2)]+..+(n+0)thereare(n+1)bracketsasyoucanseeeverybracketwillgiveusn2Sn+1=n+n+n+n+...(n+1)terms2Sn+1=n(n+1)Sn+1=n(n+1)2

Commented by Hassen_Timol last updated on 12/Mar/19

Thank you Sir, God bless you

ThankyouSir,Godblessyou

Commented by Prithwish sen last updated on 12/Mar/19

this is correct

thisiscorrect

Commented by Kunal12588 last updated on 12/Mar/19

May God bless you too.  Welcome.

MayGodblessyoutoo.Welcome.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com