Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 56244 by Kunal12588 last updated on 12/Mar/19

Is ∞ a complex number.  If not so what is It.

$${Is}\:\infty\:{a}\:{complex}\:{number}. \\ $$$${If}\:{not}\:{so}\:{what}\:{is}\:{It}. \\ $$

Commented by Joel578 last updated on 12/Mar/19

it is not a number

$${it}\:{is}\:{not}\:{a}\:{number} \\ $$

Commented by Kunal12588 last updated on 12/Mar/19

okie dokie.  waiting for then what it is  and i thought we can represent it as (1/0).  so (1/0) is not a number. but  both numerator  and denominator are numbers.

$${okie}\:{dokie}. \\ $$$${waiting}\:{for}\:{then}\:{what}\:{it}\:{is} \\ $$$${and}\:{i}\:{thought}\:{we}\:{can}\:{represent}\:{it}\:{as}\:\frac{\mathrm{1}}{\mathrm{0}}. \\ $$$${so}\:\frac{\mathrm{1}}{\mathrm{0}}\:{is}\:{not}\:{a}\:{number}.\:{but}\:\:{both}\:{numerator} \\ $$$${and}\:{denominator}\:{are}\:{numbers}. \\ $$

Commented by 121194 last updated on 12/Mar/19

one may think that (1/0)=∞, but that not entire true  think of  lim_(x→0) (1/x)  lets aproach it 2 ways  1→1  0.5→2  0.1→10  0.01→100  0.001→1000  as you can see as close we aproach x 1/x grow  without any limit, so  lim_(x→0^+ ) (1/x)=+∞   but that only 1 path, takes the 2nd one  −1→−1  −0.5→−2  −0.1→−10  −0.01→−100  as you see it grow in complet opost direction, as  lim_(x→0^− ) (1/x)=−∞  since the 2 limits are diferents we can′t say that  the limit exist so  lim_(x→0) (1/x)=∄  btw there any analogous of ∞ to complex, the  complex infinite ∞^∼   it basicaly a “number” with high modulos but  unknow argument

$$\mathrm{one}\:\mathrm{may}\:\mathrm{think}\:\mathrm{that}\:\frac{\mathrm{1}}{\mathrm{0}}=\infty,\:\mathrm{but}\:\mathrm{that}\:\mathrm{not}\:\mathrm{entire}\:\mathrm{true} \\ $$$$\mathrm{think}\:\mathrm{of} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{{x}} \\ $$$$\mathrm{lets}\:\mathrm{aproach}\:\mathrm{it}\:\mathrm{2}\:\mathrm{ways} \\ $$$$\mathrm{1}\rightarrow\mathrm{1} \\ $$$$\mathrm{0}.\mathrm{5}\rightarrow\mathrm{2} \\ $$$$\mathrm{0}.\mathrm{1}\rightarrow\mathrm{10} \\ $$$$\mathrm{0}.\mathrm{01}\rightarrow\mathrm{100} \\ $$$$\mathrm{0}.\mathrm{001}\rightarrow\mathrm{1000} \\ $$$${as}\:{you}\:{can}\:{see}\:{as}\:{close}\:{we}\:{aproach}\:{x}\:\mathrm{1}/{x}\:{grow} \\ $$$${without}\:{any}\:{limit},\:{so} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{1}}{{x}}=+\infty\: \\ $$$${but}\:{that}\:{only}\:\mathrm{1}\:{path},\:{takes}\:{the}\:\mathrm{2}{nd}\:{one} \\ $$$$−\mathrm{1}\rightarrow−\mathrm{1} \\ $$$$−\mathrm{0}.\mathrm{5}\rightarrow−\mathrm{2} \\ $$$$−\mathrm{0}.\mathrm{1}\rightarrow−\mathrm{10} \\ $$$$−\mathrm{0}.\mathrm{01}\rightarrow−\mathrm{100} \\ $$$${as}\:{you}\:{see}\:{it}\:{grow}\:{in}\:{complet}\:{opost}\:{direction},\:{as} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\frac{\mathrm{1}}{{x}}=−\infty \\ $$$${since}\:{the}\:\mathrm{2}\:{limits}\:{are}\:{diferents}\:{we}\:{can}'{t}\:{say}\:{that} \\ $$$${the}\:{limit}\:{exist}\:{so} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}=\nexists \\ $$$${btw}\:{there}\:{any}\:{analogous}\:{of}\:\infty\:{to}\:{complex},\:{the} \\ $$$${complex}\:{infinite}\:\overset{\sim} {\infty} \\ $$$${it}\:{basicaly}\:{a}\:``{number}''\:{with}\:{high}\:{modulos}\:{but} \\ $$$${unknow}\:{argument} \\ $$

Commented by Joel578 last updated on 12/Mar/19

(1/0) is actually undefined  Now, let f(x) = (1/x)  If we take x = 0.00000001, f(x) = 100000000  Next, if x getting smaller, very close to zero  then our f(x) is getting larger  Next, x now is very very very smaller, then  our f(x) is very very very large.  In this context, we can denote this as  lim_(x→0^+ )  (1/x) = (1/0) = ∞  As x is getting smaller, very close to zero  then its value will reach an arbitrarily large number.  How large? Very large. And we denote this with “∞”  So, in my opinion “∞” is a concept to describe  an arbitrarily large number, but it isn′t a number

$$\frac{\mathrm{1}}{\mathrm{0}}\:\mathrm{is}\:\mathrm{actually}\:\mathrm{undefined} \\ $$$$\mathrm{Now},\:\mathrm{let}\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}} \\ $$$$\mathrm{If}\:\mathrm{we}\:\mathrm{take}\:{x}\:=\:\mathrm{0}.\mathrm{00000001},\:{f}\left({x}\right)\:=\:\mathrm{100000000} \\ $$$$\mathrm{Next},\:\mathrm{if}\:{x}\:\mathrm{getting}\:\mathrm{smaller},\:\mathrm{very}\:\mathrm{close}\:\mathrm{to}\:\mathrm{zero} \\ $$$$\mathrm{then}\:\mathrm{our}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{getting}\:\mathrm{larger} \\ $$$$\mathrm{Next},\:{x}\:\mathrm{now}\:\mathrm{is}\:\mathrm{very}\:\mathrm{very}\:\mathrm{very}\:\mathrm{smaller},\:\mathrm{then} \\ $$$$\mathrm{our}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{very}\:\mathrm{very}\:\mathrm{very}\:\mathrm{large}. \\ $$$$\mathrm{In}\:\mathrm{this}\:\mathrm{context},\:\mathrm{we}\:\mathrm{can}\:\mathrm{denote}\:\mathrm{this}\:\mathrm{as} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}}\:=\:\frac{\mathrm{1}}{\mathrm{0}}\:=\:\infty \\ $$$$\mathrm{As}\:{x}\:\mathrm{is}\:\mathrm{getting}\:\mathrm{smaller},\:\mathrm{very}\:\mathrm{close}\:\mathrm{to}\:\mathrm{zero} \\ $$$$\mathrm{then}\:\mathrm{its}\:\mathrm{value}\:\mathrm{will}\:\mathrm{reach}\:\mathrm{an}\:\mathrm{arbitrarily}\:\mathrm{large}\:\mathrm{number}. \\ $$$$\mathrm{How}\:\mathrm{large}?\:\mathrm{Very}\:\mathrm{large}.\:\mathrm{And}\:\mathrm{we}\:\mathrm{denote}\:\mathrm{this}\:\mathrm{with}\:``\infty'' \\ $$$$\mathrm{So},\:\mathrm{in}\:\mathrm{my}\:\mathrm{opinion}\:``\infty''\:\mathrm{is}\:\mathrm{a}\:\mathrm{concept}\:\mathrm{to}\:\mathrm{describe} \\ $$$$\mathrm{an}\:\mathrm{arbitrarily}\:\mathrm{large}\:\mathrm{number},\:\mathrm{but}\:\mathrm{it}\:\mathrm{isn}'\mathrm{t}\:\mathrm{a}\:\mathrm{number} \\ $$

Commented by Joel578 last updated on 12/Mar/19

That′ s what I know. I am open for any critics if  I made any mistakes

$$\mathrm{That}'\:\mathrm{s}\:\mathrm{what}\:\mathrm{I}\:\mathrm{know}.\:\mathrm{I}\:\mathrm{am}\:\mathrm{open}\:\mathrm{for}\:\mathrm{any}\:\mathrm{critics}\:\mathrm{if} \\ $$$$\mathrm{I}\:\mathrm{made}\:\mathrm{any}\:\mathrm{mistakes} \\ $$

Commented by Kunal12588 last updated on 12/Mar/19

thank you very much sirs.

$${thank}\:{you}\:{very}\:{much}\:{sirs}. \\ $$

Commented by prakash jain last updated on 12/Mar/19

please visit the below link for definition of complex infinity http://mathworld.wolfram.com/ComplexInfinity.html

Terms of Service

Privacy Policy

Contact: info@tinkutara.com