Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 56280 by rahul 19 last updated on 13/Mar/19

Evaluate :  1) ((∫_0 ^( 1_ ) (1−(1−x^2 )^(100) )^(201)  .xdx)/(∫_0 ^( 1) (1−(1−x^2 )^(100) )^(202) .xdx)) = ?    2) ((∫_0 ^( 1) (1−x^(200) )^(201) dx)/(∫_0 ^( 1) (1−x^(200) )^(202) dx)) = ?

Evaluate:1)01(1(1x2)100)201.xdx01(1(1x2)100)202.xdx=?2)01(1x200)201dx01(1x200)202dx=?

Commented by rahul 19 last updated on 13/Mar/19

Ans:  1) ((20201)/(20200 ))         2)((40401)/(40400)) .

Ans:1)20201202002)4040140400.

Commented by tanmay.chaudhury50@gmail.com last updated on 13/Mar/19

rahul pls check the answer

rahulplschecktheanswer

Answered by tanmay.chaudhury50@gmail.com last updated on 13/Mar/19

2)t=x^(200)   dt=200x^(199) dx  dt=200×(t^(1/(200)) )^(199) dx  dx=(dt/(200×t^((199)/(200)) ))  ((∫_0 ^1 (1−x^(200) )^(201) dx)/(∫_0 ^1 (1−x^(200) )^(202) dx))  ((∫_0 ^1 (1−t)^(201) ×(dt/(200×t^((199)/(200)) )))/(∫_0 ^1 (1−t)^(202) ×(dt/(200×t^((199)/(200)) ))))  ((∫_0 ^1 (1−t)^(201) ×t^((1/(200))−1) dt)/(∫_0 ^1 (1−t)^(202) ×t^((1/(200))−1) dt))  now look formula β function  β(m,n)=∫_0 ^1 x^(m−1) (1−x)^(n−1) dx  =((⌈(m)⌈(n))/(⌈(m+n)))  =(((⌈(202)⌈((1/(200))))/(⌈(202+(1/(200)))))/((⌈(203)⌈((1/(200))))/(⌈(203+(1/(200))))))  now ⌈(n+1)=n!  =(((201!)/((201+(1/(200)))!))/((202!)/((202+(1/(200)))!)))  =((201!×(202+(1/(200)))!)/(202!×(201+(1/(200)))!))  =(1/(202))×(202+(1/(200)))×(201+(1/(200)))!×(1/((201+(1/(200)))!))  =1+(1/(200×202))  =l

2)t=x200dt=200x199dxdt=200×(t1200)199dxdx=dt200×t19920001(1x200)201dx01(1x200)202dx01(1t)201×dt200×t19920001(1t)202×dt200×t19920001(1t)201×t12001dt01(1t)202×t12001dtnowlookformulaβfunctionβ(m,n)=01xm1(1x)n1dx=(m)(n)(m+n)=(202)(1200)(202+1200)(203)(1200)(203+1200)now(n+1)=n!=201!(201+1200)!202!(202+1200)!=201!×(202+1200)!202!×(201+1200)!=1202×(202+1200)×(201+1200)!×1(201+1200)!=1+1200×202=l

Commented by rahul 19 last updated on 13/Mar/19

It will be   = (1/(202))×(202+(1/(200)))= 1+(1/(202×200))  = ((40401)/(40400)) Ans.!  Thank you Sir!

Itwillbe=1202×(202+1200)=1+1202×200=4040140400Ans.!ThankyouSir!

Commented by tanmay.chaudhury50@gmail.com last updated on 13/Mar/19

thank you rahul...sometimes i loss consistsncy...

thankyourahul...sometimesilossconsistsncy...

Answered by tanmay.chaudhury50@gmail.com last updated on 13/Mar/19

1)((∫_0 ^1 {1−(1−x^2 )^a }^(2a+1) .xdx)/(∫_0 ^1 {1−(1−x^2 )^a }^(2a+2) .xdx))   a=100  t=1−x^2    dt=−2xdx  (((1/2)∫_1 ^0 (1−t^a )^(2a+1) ×−dt)/((1/2)∫_1 ^0 (1−t^a )^(2a+2) ×−dt))  ((∫_0 ^1 (1−t^a )^(2a+1) dt)/(∫_0 ^1 (1−t^a )^(2a+2) dt))  ((∫_0 ^1 (1−t^(100) )^(201) dt)/(∫_0 ^1 (1−t^(100) )^(202) dt))  look same type  question  of question no 2  but solving other way  let t^(100) =sin^2 α   →100t^(99) dt=2sinαcosαdα  dt=((2sinαcosαdα)/(100(sin^2 α)^(1/(100)) ))=(1/(50))×(sinα)^(1−(1/(50))) ×cosαdα  ((∫_0 ^(π/2) (1−sin^2 α)^(201) ×(1/(50))×(sinα)^(1−(1/(50))) ×cosαdα)/(∫_0 ^(π/2) (1−sin^2 α)^(202) ×(1/(50))×(sinα)^(1−(1/(50))) ×cosαdα))(/)  ((∫^(π/2) cos^(402) α)(sinα)^(1−(1/(50)))  ×cosαdα)/(∫_0 ^(π/2) cos^(404) ×sin^(1−(1/(50))) ×cosαdα))  ((∫_0 ^(π/2) (sinα)^(1−(1/(50))) ×(cosα)^(403) dα)/(∫_0 ^(π/2) (sinα)^(1−(1/(50))) ×(cosα)^(405) dα))    now formulA  2∫_0 ^(π/2) sin^(2p−1) αcos^(2q−1) αdα=((⌈(p)⌈(q))/(⌈(p+q)))    2p−1=1−(1/(50)) →2p=2−(1/(50)) →p=1−(1/(100))  2q−1=403→2q=404→q=202  2q_1 −1=405→2q_1 =406→q_1 =203  q_1 =q+1→⌈(q_1 )=⌈(q+1)→q⌈(q)  p+q_1 =p+q+1→⌈(p+q_1 )=⌈(p+q+1)→(p+q)⌈(p+q)  ((2∫^(π/2) sin^(2p−1) αcos^(2q−1) αdα)/(2∫_0 ^(π/2) sin^(2p−1) αcos^(2q_1 −1) αdα)) =(((⌈(p)⌈(q))/(⌈(p+q)))/((⌈(p)⌈(q_1 ))/(⌈(p+q_1 ))))  =((⌈(p)⌈(q)⌈(p+q_1 ))/(⌈(p)⌈(q_1 )⌈(p+q)))  =((⌈(q)×(p+q)⌈(p+q))/(q⌈(q)×⌈(p+q)))  =((p+q)/q)=((1−(1/(100))+202)/(202))=((100−1+20200)/(20200))=((20300−1)/(20200))  =((20299)/(20200)) Rahul pls check...

1)01{1(1x2)a}2a+1.xdx01{1(1x2)a}2a+2.xdxa=100t=1x2dt=2xdx1210(1ta)2a+1×dt1210(1ta)2a+2×dt01(1ta)2a+1dt01(1ta)2a+2dt01(1t100)201dt01(1t100)202dtlooksametypequestionofquestionno2butsolvingotherwaylett100=sin2α100t99dt=2sinαcosαdαdt=2sinαcosαdα100(sin2α)1100=150×(sinα)1150×cosαdα0π2(1sin2α)201×150×(sinα)1150×cosαdα0π2(1sin2α)202×150×(sinα)1150×cosαdαπ2cos402α)(sinα)1150×cosαdα0π2cos404×sin1150×cosαdα0π2(sinα)1150×(cosα)403dα0π2(sinα)1150×(cosα)405dαnowformulA20π2sin2p1αcos2q1αdα=(p)(q)(p+q)2p1=11502p=2150p=111002q1=4032q=404q=2022q11=4052q1=406q1=203q1=q+1(q1)=(q+1)q(q)p+q1=p+q+1(p+q1)=(p+q+1)(p+q)(p+q)2π2sin2p1αcos2q1αdα20π2sin2p1αcos2q11αdα=(p)(q)(p+q)(p)(q1)(p+q1)=(p)(q)(p+q1)(p)(q1)(p+q)=(q)×(p+q)(p+q)q(q)×(p+q)=p+qq=11100+202202=1001+2020020200=20300120200=2029920200Rahulplscheck...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com