Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 56289 by mr W last updated on 13/Mar/19

Commented by mr W last updated on 13/Mar/19

See Q56264  Find the max. and min. circumscribing  equilateral triangle of a given triangle  with side lengthes a, b and c.

SeeQ56264Findthemax.andmin.circumscribingequilateraltriangleofagiventrianglewithsidelengthesa,bandc.

Commented by ajfour last updated on 13/Mar/19

Commented by MJS last updated on 13/Mar/19

solution method:  (1) coordinates for A, B, C  (2) lines p, q, r through A, B, C with slopes      θ−60°, θ, θ+60°  (3) intersections P, Q, R (always forming an       equilateral triangle)  (4) calculate s(θ)  (5) (d/dθ)s(θ)=0 ⇒ θ=arctan t which leads to       a 2^(nd)  degree polynome we can always solve    sorry I′ve got no time to type at the moment

solutionmethod:(1)coordinatesforA,B,C(2)linesp,q,rthroughA,B,Cwithslopesθ60°,θ,θ+60°(3)intersectionsP,Q,R(alwaysforminganequilateraltriangle)(4)calculates(θ)(5)ddθs(θ)=0θ=arctantwhichleadstoa2nddegreepolynomewecanalwayssolvesorryIvegotnotimetotypeatthemoment

Commented by mr W last updated on 14/Mar/19

perfectly done!

perfectlydone!

Commented by ajfour last updated on 14/Mar/19

thank you Sir.

thankyouSir.

Commented by mr W last updated on 15/Mar/19

sir, can you please check following issue:  the s_(max)  should be symmetric about  a,b,c. i.e. if we exchange a and b, s_(max)   should be the same. but the formula  above is not symmetric for a,b,c.  e.g.  a=5,b=4,c=3 don′t give the same s_(max)   as a=4,b=5,c=3.

sir,canyoupleasecheckfollowingissue:thesmaxshouldbesymmetricabouta,b,c.i.e.ifweexchangeaandb,smaxshouldbethesame.buttheformulaaboveisnotsymmetricfora,b,c.e.g.a=5,b=4,c=3dontgivethesamesmaxasa=4,b=5,c=3.

Commented by ajfour last updated on 15/Mar/19

very strange, no way out yet! Sir.

verystrange,nowayoutyet!Sir.

Answered by mr W last updated on 13/Mar/19

s=edge length of equilateral triangle  sin β=(x/a) sin (π/3)=(((√3)x)/(2a))  α=π−(β+(π/3))  PB=((sin (β+(π/3)))/(sin (π/3))) a=(((sin β)/(tan (π/3)))+cos β)b=(x/2)+a(√(1−((3x^2 )/(4a^2 ))))  sin ϕ=((s−x)/b) sin (π/3)=(((√3)(s−x))/(2b))  γ=π−(ϕ+(π/3))  QA=((sin (ϕ+(π/3)))/(sin (π/3))) b=(((sin ϕ)/(tan (π/3)))+cos ϕ)b=((s−x)/2)+b(√(1−((3(s−x)^2 )/(4b^2 ))))  RB=s−(x/2)−a(√(1−((3x^2 )/(4a^2 ))))  RA=s−((s−x)/2)−b(√(1−((3(s−x)^2 )/(4b^2 ))))=((s+x)/2)−b(√(1−((3(s−x)^2 )/(4b^2 ))))  c^2 =(((2s−x)/2)−(√(a^2 −((3x^2 )/4))))^2 +(((s+x)/2)−(√(b^2 −((3(s−x)^2 )/4))))^2 −(((2s−x)/2)−(√(a^2 −((3x^2 )/4))))(((s+x)/2)−(√(b^2 −((3(s−x)^2 )/4))))  4c^2 =(2s−x−(√(4a^2 −3x^2 )))^2 +(s+x−(√(4b^2 −3(s−x)^2 )))^2 −(2s−x−(√(4a^2 −3x^2 )))(s+x−(√(4b^2 −3(s−x)^2 )))  ......

s=edgelengthofequilateraltrianglesinβ=xasinπ3=3x2aα=π(β+π3)PB=sin(β+π3)sinπ3a=(sinβtanπ3+cosβ)b=x2+a13x24a2sinφ=sxbsinπ3=3(sx)2bγ=π(φ+π3)QA=sin(φ+π3)sinπ3b=(sinφtanπ3+cosφ)b=sx2+b13(sx)24b2RB=sx2a13x24a2RA=ssx2b13(sx)24b2=s+x2b13(sx)24b2c2=(2sx2a23x24)2+(s+x2b23(sx)24)2(2sx2a23x24)(s+x2b23(sx)24)4c2=(2sx4a23x2)2+(s+x4b23(sx)2)2(2sx4a23x2)(s+x4b23(sx)2)......

Terms of Service

Privacy Policy

Contact: info@tinkutara.com