Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 5629 by LMTV last updated on 23/May/16

L(sin^2 t)=?

$$\mathscr{L}\left(\mathrm{sin}\:^{\mathrm{2}} {t}\right)=? \\ $$

Commented by FilupSmith last updated on 23/May/16

Laplace transform?

$$\mathrm{Laplace}\:\mathrm{transform}? \\ $$

Commented by LMTV last updated on 23/May/16

yes >⌣<

$${yes}\:>\smallsmile< \\ $$

Commented by FilupSmith last updated on 23/May/16

L(sin^2 t)=∫_0 ^( ∞) e^(−st) sin^2 (t)dt  sin^2 t=(1/2)(1−cos(2t))  L(sin^2 t)=(1/2)∫_0 ^( ∞) e^(−st) (1−cos(2t))dt  unsure how to solve

$$\mathscr{L}\left(\mathrm{sin}^{\mathrm{2}} {t}\right)=\int_{\mathrm{0}} ^{\:\infty} {e}^{−{st}} \mathrm{sin}^{\mathrm{2}} \left({t}\right){dt} \\ $$$$\mathrm{sin}^{\mathrm{2}} {t}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{cos}\left(\mathrm{2}{t}\right)\right) \\ $$$$\mathscr{L}\left(\mathrm{sin}^{\mathrm{2}} {t}\right)=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} {e}^{−{st}} \left(\mathrm{1}−\mathrm{cos}\left(\mathrm{2}{t}\right)\right){dt} \\ $$$$\mathrm{unsure}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve} \\ $$

Commented by Yozzii last updated on 23/May/16

e^((a+bi)x) =e^(ax) e^(bix) =e^(ax) (cosbx+isinbx)  ⇒Re∫e^((a+bi)x) dx=∫e^(ax) cosbxdx  ∴∫e^(ax) cosbxdx=Re((1/(a+bi))e^((a+bi)x) )+C  ∫e^(ax) cosbxdx=Re((((a−bi)e^((a+bi)x) )/(a^2 +b^2 )))+C  ∫e^(ax) cosbxdx=((e^(ax) (acosbx+bsinbx))/(a^2 +b^2 ))+C  Let a=−s and b=2.  ∴∫e^(−sx) cos2xdx=((e^(−sx) (2sin2x−scos2x))/(s^2 +4))+C  ∴L(sin^2 t)=(1/2)lim_(m→∞) (((−e^(−st) )/s)+((e^(−st) (scos2t−2sin2t))/(s^2 +4)))∣_0 ^m   L(sin^2 t)=0.5lim_(m→∞) (e^(−sm) (((scos2m−2sin2m)/(s^2 +4))−(1/s))+(1/s)−(s/(s^2 +4)))  L(sin^2 t)=0.5(((s^2 +4−s^2 )/(s(s^2 +4))))  L(sin^2 t)=(2/(s(s^2 +4)))

$${e}^{\left({a}+{bi}\right){x}} ={e}^{{ax}} {e}^{{bix}} ={e}^{{ax}} \left({cosbx}+{isinbx}\right) \\ $$$$\Rightarrow{Re}\int{e}^{\left({a}+{bi}\right){x}} {dx}=\int{e}^{{ax}} {cosbxdx} \\ $$$$\therefore\int{e}^{{ax}} {cosbxdx}={Re}\left(\frac{\mathrm{1}}{{a}+{bi}}{e}^{\left({a}+{bi}\right){x}} \right)+{C} \\ $$$$\int{e}^{{ax}} {cosbxdx}={Re}\left(\frac{\left({a}−{bi}\right){e}^{\left({a}+{bi}\right){x}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right)+{C} \\ $$$$\int{e}^{{ax}} {cosbxdx}=\frac{{e}^{{ax}} \left({acosbx}+{bsinbx}\right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+{C} \\ $$$${Let}\:{a}=−{s}\:{and}\:{b}=\mathrm{2}. \\ $$$$\therefore\int{e}^{−{sx}} {cos}\mathrm{2}{xdx}=\frac{{e}^{−{sx}} \left(\mathrm{2}{sin}\mathrm{2}{x}−{scos}\mathrm{2}{x}\right)}{{s}^{\mathrm{2}} +\mathrm{4}}+{C} \\ $$$$\therefore\mathscr{L}\left({sin}^{\mathrm{2}} {t}\right)=\frac{\mathrm{1}}{\mathrm{2}}\underset{{m}\rightarrow\infty} {\mathrm{lim}}\left(\frac{−{e}^{−{st}} }{{s}}+\frac{{e}^{−{st}} \left({scos}\mathrm{2}{t}−\mathrm{2}{sin}\mathrm{2}{t}\right)}{{s}^{\mathrm{2}} +\mathrm{4}}\right)\mid_{\mathrm{0}} ^{{m}} \\ $$$$\mathscr{L}\left({sin}^{\mathrm{2}} {t}\right)=\mathrm{0}.\mathrm{5}\underset{{m}\rightarrow\infty} {\mathrm{lim}}\left({e}^{−{sm}} \left(\frac{{scos}\mathrm{2}{m}−\mathrm{2}{sin}\mathrm{2}{m}}{{s}^{\mathrm{2}} +\mathrm{4}}−\frac{\mathrm{1}}{{s}}\right)+\frac{\mathrm{1}}{{s}}−\frac{{s}}{{s}^{\mathrm{2}} +\mathrm{4}}\right) \\ $$$$\mathscr{L}\left({sin}^{\mathrm{2}} {t}\right)=\mathrm{0}.\mathrm{5}\left(\frac{{s}^{\mathrm{2}} +\mathrm{4}−{s}^{\mathrm{2}} }{{s}\left({s}^{\mathrm{2}} +\mathrm{4}\right)}\right) \\ $$$$\mathscr{L}\left({sin}^{\mathrm{2}} {t}\right)=\frac{\mathrm{2}}{{s}\left({s}^{\mathrm{2}} +\mathrm{4}\right)} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com