Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 56301 by naka3546 last updated on 13/Mar/19

Minimum  value  of  b  that  satisfy  the  following  inequality                  ((53)/(201))  <  (a/b)  <  (4/(15))     is   ...

Minimumvalueofbthatsatisfythe followinginequality 53201<ab<415is...

Commented bynaka3546 last updated on 13/Mar/19

a, b  are  positive integers .

a,barepositiveintegers.

Answered by tanmay.chaudhury50@gmail.com last updated on 13/Mar/19

201=3×67    15=3×5  ((53)/(201))=((265)/(1005))  and  (4/(15))=((4×67)/(15×67))=((268)/(1005))  (a/b)=((266)/(1005)) ←first answer  (a/b)=((267)/(1005))←second answer  so b=1005

201=3×6715=3×5 53201=2651005and415=4×6715×67=2681005 ab=2661005firstanswer ab=2671005secondanswer sob=1005

Commented bymr W last updated on 14/Mar/19

with mininmum b: (9/(34))  the next are ((13)/(49)), ((14)/(53)), ((17)/(64)),((19)/(72))....

withmininmumb:934 thenextare1349,1453,1764,1972....

Commented bynaka3546 last updated on 14/Mar/19

how  to  get  it, sir.

howtogetit,sir.

Commented byMJS last updated on 14/Mar/19

((53)/(201))<(a/b)<(4/(15))  ((53)/(201))b<a<(4/(15))b  b≠15n ∧ b≠201n  ⌈((53)/(201))b⌉>⌊(4/(15))b⌋ xor ⌈((53)/(201))b⌉=⌊(4/(15))b⌋=a  now we must try

53201<ab<415 53201b<a<415b b15nb201n 53201b>415bxor53201b=415b=a nowwemusttry

Commented byKunal12588 last updated on 13/Mar/19

sir ((53)/(201))<((33)/(125))<(4/(15))  don′t know there can be smaller answers.

sir53201<33125<415 dontknowtherecanbesmalleranswers.

Commented bynaka3546 last updated on 14/Mar/19

(9/(34))  may  be,  I  don′t  know about  it.

934maybe,Idontknowaboutit.

Answered by mr W last updated on 15/Mar/19

this is my method:  ((53)/(201))  <  (a/b)  <  (4/(15))  ⇒ ((201)/(53))>(b/a)>((15)/4)  ⇒ ((15a)/4)<b<((201a)/(53))  ⇒⌊((15a)/4)⌋+1≤b≤⌈((201a)/(53))⌉−1    for a given value of a we calculate  ⌊((15a)/4)⌋+1 and ⌈((201a)/(53))⌉−1.  if ⌊((15a)/4)⌋+1≤⌈((201a)/(53))⌉−1, then b exists,  and b=⌊((15a)/4)⌋+1...⌈((201a)/(53))⌉−1.    if we start with a=1,2,3,... we′ll get all  possible (infinite) solutions:  a=9⇒b=34  a=13⇒b=49  a=14⇒b=53  a=17⇒b=64  a=19⇒b=72  a=21⇒b=79  a=22⇒b=83  a=23⇒b=87  a=24⇒b=91  a=25⇒b=94  a=29⇒b=109  a=30⇒b=113  a=31⇒b=117  a=32⇒b=121  a=33⇒b=124, 125  a=35⇒b=132  ......  a=117⇒b=439, 440, 442, 443  ......

thisismymethod: 53201<ab<415 20153>ba>154 15a4<b<201a53 15a4+1b201a531 foragivenvalueofawecalculate 15a4+1and201a531. if15a4+1201a531,thenbexists, andb=15a4+1...201a531. ifwestartwitha=1,2,3,...wellgetall possible(infinite)solutions: a=9b=34 a=13b=49 a=14b=53 a=17b=64 a=19b=72 a=21b=79 a=22b=83 a=23b=87 a=24b=91 a=25b=94 a=29b=109 a=30b=113 a=31b=117 a=32b=121 a=33b=124,125 a=35b=132 ...... a=117b=439,440,442,443 ......

Commented bymr W last updated on 15/Mar/19

is there an easier way than this?

isthereaneasierwaythanthis?

Commented byMJS last updated on 16/Mar/19

no.

no.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com