Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 56311 by maxmathsup by imad last updated on 13/Mar/19

let f(x) =∫_0 ^∞   ((cos(xt))/(x^2  +t^2 )) dt  with x>0  1) find f(x)  2) find the values of ∫_0 ^∞   ((cos(t))/(1+t^2 ))dt and ∫_0 ^∞  ((cos(2t))/(4+t^2 ))dt  3) let U_n =∫_0 ^∞   ((cos(nt))/(n^2 +t^2 ))dt   find lim_(n→+∞) U_n     and study the convergenge of  Σ U_n    and Σ U_n ^2

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({xt}\right)}{{x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }\:{dt}\:\:{with}\:{x}>\mathrm{0} \\ $$ $$\left.\mathrm{1}\right)\:{find}\:{f}\left({x}\right) \\ $$ $$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\mathrm{2}{t}\right)}{\mathrm{4}+{t}^{\mathrm{2}} }{dt} \\ $$ $$\left.\mathrm{3}\right)\:{let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({nt}\right)}{{n}^{\mathrm{2}} +{t}^{\mathrm{2}} }{dt}\:\:\:{find}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} \:\:\:\:{and}\:{study}\:{the}\:{convergenge}\:{of} \\ $$ $$\Sigma\:{U}_{{n}} \:\:\:{and}\:\Sigma\:{U}_{{n}} ^{\mathrm{2}} \\ $$ $$ \\ $$

Commented bymaxmathsup by imad last updated on 15/Mar/19

1) we have 2f(x) =∫_(−∞) ^(+∞)   ((cos(xt))/(t^2  +x^2 ))dt =Re(∫_(−∞) ^(+∞)   (e^(ixt) /(t^2  +x^2 ))dt) let consider the  complex function ϕ(z) =(e^(ixz) /(z^2  +x^2 )) ⇒ϕ(z)=(e^(ixz) /((z−ix)(z+ix))) so the poles of ϕ are  +^− ix    residus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,ix)  Res(ϕ,ix) =lim_(z→ix) (z−ix)ϕ(z) =(e^(ix(ix)) /(2ix)) =(e^(−x^2 ) /(2ix)) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (e^(−x^2 ) /(2ix))  =(π/x) e^(−x^2 )     ⇒★f(x) =(π/(2x))e^(−x^2 )  ★  2) ∫_0 ^∞   ((cos(t))/(1+t^2 ))dt =f(1) =(π/(2e))  ∫_0 ^∞   ((cos(2t))/(4+t^2 )) =f(2) =(π/4) e^(−4)   3) we have U_n =f(n) =(π/(2n)) e^(−n^2 )   ⇒lim_(n→+∞)   U_n =0  we have  U_n >0  and   U_n ≤(π/2) e^(−n^2 ) ≤ (π/2) e^(−n)        (n>0)    ⇒Σ_(n=1) ^∞  U_n  ≤ (π/2)Σ_(n=1) ^∞  e^(−n)    and this serie converges ⇒Σ U_n  is convergente  we have U_n ^2  =(π^2 /(4n^2 )) e^(−2n^2 )  ⇒U_n ^2  ≤ (π^2 /4) e^(−2n)   ⇒Σ_(n=1) ^∞  U_n ^2  ≤(π^2 /4) Σ_(n=1) ^∞  e^(−2n)  and this  serie converges ⇒Σ U_n ^2  converges.

$$\left.\mathrm{1}\right)\:{we}\:{have}\:\mathrm{2}{f}\left({x}\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({xt}\right)}{{t}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }{dt}\:={Re}\left(\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{ixt}} }{{t}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }{dt}\right)\:{let}\:{consider}\:{the} \\ $$ $${complex}\:{function}\:\varphi\left({z}\right)\:=\frac{{e}^{{ixz}} }{{z}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }\:\Rightarrow\varphi\left({z}\right)=\frac{{e}^{{ixz}} }{\left({z}−{ix}\right)\left({z}+{ix}\right)}\:{so}\:{the}\:{poles}\:{of}\:\varphi\:{are} \\ $$ $$\overset{−} {+}{ix}\:\:\:\:{residus}\:{theorem}\:{give}\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{ix}\right) \\ $$ $${Res}\left(\varphi,{ix}\right)\:={lim}_{{z}\rightarrow{ix}} \left({z}−{ix}\right)\varphi\left({z}\right)\:=\frac{{e}^{{ix}\left({ix}\right)} }{\mathrm{2}{ix}}\:=\frac{{e}^{−{x}^{\mathrm{2}} } }{\mathrm{2}{ix}}\:\Rightarrow\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{−{x}^{\mathrm{2}} } }{\mathrm{2}{ix}} \\ $$ $$=\frac{\pi}{{x}}\:{e}^{−{x}^{\mathrm{2}} } \:\:\:\:\Rightarrow\bigstar{f}\left({x}\right)\:=\frac{\pi}{\mathrm{2}{x}}{e}^{−{x}^{\mathrm{2}} } \:\bigstar \\ $$ $$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:={f}\left(\mathrm{1}\right)\:=\frac{\pi}{\mathrm{2}{e}} \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{2}{t}\right)}{\mathrm{4}+{t}^{\mathrm{2}} }\:={f}\left(\mathrm{2}\right)\:=\frac{\pi}{\mathrm{4}}\:{e}^{−\mathrm{4}} \\ $$ $$\left.\mathrm{3}\right)\:{we}\:{have}\:{U}_{{n}} ={f}\left({n}\right)\:=\frac{\pi}{\mathrm{2}{n}}\:{e}^{−{n}^{\mathrm{2}} } \:\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:\:{U}_{{n}} =\mathrm{0} \\ $$ $${we}\:{have}\:\:{U}_{{n}} >\mathrm{0}\:\:{and}\:\:\:{U}_{{n}} \leqslant\frac{\pi}{\mathrm{2}}\:{e}^{−{n}^{\mathrm{2}} } \leqslant\:\frac{\pi}{\mathrm{2}}\:{e}^{−{n}} \:\:\:\:\:\:\:\left({n}>\mathrm{0}\right)\:\: \\ $$ $$\Rightarrow\sum_{{n}=\mathrm{1}} ^{\infty} \:{U}_{{n}} \:\leqslant\:\frac{\pi}{\mathrm{2}}\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−{n}} \:\:\:{and}\:{this}\:{serie}\:{converges}\:\Rightarrow\Sigma\:{U}_{{n}} \:{is}\:{convergente} \\ $$ $${we}\:{have}\:{U}_{{n}} ^{\mathrm{2}} \:=\frac{\pi^{\mathrm{2}} }{\mathrm{4}{n}^{\mathrm{2}} }\:{e}^{−\mathrm{2}{n}^{\mathrm{2}} } \:\Rightarrow{U}_{{n}} ^{\mathrm{2}} \:\leqslant\:\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:{e}^{−\mathrm{2}{n}} \:\:\Rightarrow\sum_{{n}=\mathrm{1}} ^{\infty} \:{U}_{{n}} ^{\mathrm{2}} \:\leqslant\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−\mathrm{2}{n}} \:{and}\:{this} \\ $$ $${serie}\:{converges}\:\Rightarrow\Sigma\:{U}_{{n}} ^{\mathrm{2}} \:{converges}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com