All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 56311 by maxmathsup by imad last updated on 13/Mar/19
letf(x)=∫0∞cos(xt)x2+t2dtwithx>0 1)findf(x) 2)findthevaluesof∫0∞cos(t)1+t2dtand∫0∞cos(2t)4+t2dt 3)letUn=∫0∞cos(nt)n2+t2dtfindlimn→+∞Unandstudytheconvergengeof ΣUnandΣUn2
Commented bymaxmathsup by imad last updated on 15/Mar/19
1)wehave2f(x)=∫−∞+∞cos(xt)t2+x2dt=Re(∫−∞+∞eixtt2+x2dt)letconsiderthe complexfunctionφ(z)=eixzz2+x2⇒φ(z)=eixz(z−ix)(z+ix)sothepolesofφare +−ixresidustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,ix) Res(φ,ix)=limz→ix(z−ix)φ(z)=eix(ix)2ix=e−x22ix⇒∫−∞+∞φ(z)dz=2iπe−x22ix =πxe−x2⇒★f(x)=π2xe−x2★ 2)∫0∞cos(t)1+t2dt=f(1)=π2e ∫0∞cos(2t)4+t2=f(2)=π4e−4 3)wehaveUn=f(n)=π2ne−n2⇒limn→+∞Un=0 wehaveUn>0andUn⩽π2e−n2⩽π2e−n(n>0) ⇒∑n=1∞Un⩽π2∑n=1∞e−nandthisserieconverges⇒ΣUnisconvergente wehaveUn2=π24n2e−2n2⇒Un2⩽π24e−2n⇒∑n=1∞Un2⩽π24∑n=1∞e−2nandthis serieconverges⇒ΣUn2converges.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com