Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 56329 by maxmathsup by imad last updated on 14/Mar/19

1)calculate A_n =∫_(1/n) ^1   ((ln(1+x^2 ))/(1+x^2 ))dx    with n integr and n≥1  2) find lim_(n→+∞)     A_n   3)  study the convergence of Σ A_n

1)calculateAn=1n1ln(1+x2)1+x2dxwithnintegrandn12)findlimn+An3)studytheconvergenceofΣAn

Commented by maxmathsup by imad last updated on 17/Mar/19

1) A_n =_(x=tanθ)    ∫_(arctan((1/n))) ^(π/4)  ((ln(1+tan^2 θ))/(1+tan^2 θ)) (1+tan^2 θ)dθ  = ∫_(arctan((1/n))) ^(π/4)  ln ((1/(cos^2 θ)))dθ =−2 ∫_(arctan((1/n))) ^(π/4)  ln(cosθ)dθ ⇒  lim_(n→+∞)  A_n =−2 ∫_0 ^(π/4) ln(cosθ)dθ  let I =∫_0 ^(π/4)  ln(cosθ)dθ and  J =∫_0 ^(π/4)  ln(sinθ)dθ   we have  I +J =∫_0 ^(π/4)   ln(cosθ sinθ)dθ  = ∫_0 ^(π/4) ln(((sin(2θ))/2))dθ =−(π/4)ln(2) +∫_0 ^(π/4)  ln(sin(2θ))dθ but  ∫_0 ^(π/4) ln(sin(2θ)dθ =_(2θ =t)    (1/2)∫_0 ^(π/2)  ln(sint) dt =(1/2)(−(π/2)ln(2)) =−(π/4)ln(2) ⇒  I +J =−(π/2)ln(2)  I =∫_0 ^(π/4)  ln(cosθ)dθ =_(θ =t−(π/2))    ∫_(π/2) ^((3π)/4)  ln(sinθ)dθ  =∫_(π/2) ^0 ln(sinθ)dθ +∫_0 ^((3π)/4) ln(sinθ)dθ  =(π/2)ln(2)+ ∫_0 ^((3π)/4) ln(sinθ)dθ  ....be continued....

1)An=x=tanθarctan(1n)π4ln(1+tan2θ)1+tan2θ(1+tan2θ)dθ=arctan(1n)π4ln(1cos2θ)dθ=2arctan(1n)π4ln(cosθ)dθlimn+An=20π4ln(cosθ)dθletI=0π4ln(cosθ)dθandJ=0π4ln(sinθ)dθwehaveI+J=0π4ln(cosθsinθ)dθ=0π4ln(sin(2θ)2)dθ=π4ln(2)+0π4ln(sin(2θ))dθbut0π4ln(sin(2θ)dθ=2θ=t120π2ln(sint)dt=12(π2ln(2))=π4ln(2)I+J=π2ln(2)I=0π4ln(cosθ)dθ=θ=tπ2π23π4ln(sinθ)dθ=π20ln(sinθ)dθ+03π4ln(sinθ)dθ=π2ln(2)+03π4ln(sinθ)dθ....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com