All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 56329 by maxmathsup by imad last updated on 14/Mar/19
1)calculateAn=∫1n1ln(1+x2)1+x2dxwithnintegrandn⩾12)findlimn→+∞An3)studytheconvergenceofΣAn
Commented by maxmathsup by imad last updated on 17/Mar/19
1)An=x=tanθ∫arctan(1n)π4ln(1+tan2θ)1+tan2θ(1+tan2θ)dθ=∫arctan(1n)π4ln(1cos2θ)dθ=−2∫arctan(1n)π4ln(cosθ)dθ⇒limn→+∞An=−2∫0π4ln(cosθ)dθletI=∫0π4ln(cosθ)dθandJ=∫0π4ln(sinθ)dθwehaveI+J=∫0π4ln(cosθsinθ)dθ=∫0π4ln(sin(2θ)2)dθ=−π4ln(2)+∫0π4ln(sin(2θ))dθbut∫0π4ln(sin(2θ)dθ=2θ=t12∫0π2ln(sint)dt=12(−π2ln(2))=−π4ln(2)⇒I+J=−π2ln(2)I=∫0π4ln(cosθ)dθ=θ=t−π2∫π23π4ln(sinθ)dθ=∫π20ln(sinθ)dθ+∫03π4ln(sinθ)dθ=π2ln(2)+∫03π4ln(sinθ)dθ....becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com