All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 56345 by maxmathsup by imad last updated on 14/Mar/19
letf(a)=∫0∞dxxn+anwithnintegr⩾2anda>0 1)calculatef(a)intemsofa 2)letg(a)=∫0∞dx(xn+an)2calculateg(a)intermsofa 3)findthevaluesofintegrals∫0∞dxx8+16and∫0∞dx(x8+16)2
Commented bymaxmathsup by imad last updated on 17/Mar/19
1)changementx=atgivef(a)=∫0∞adtantn+an=1an−1∫0∞dttn+1 ∫0∞dttn+1=t=u1n∫0∞1n(1+u)u1n−1du=1n∫0∞u1n−11+udu =1nπsin(πn)=πnsin(πn)(wehaveprovedthat∫0∞xa−11+xdx=πsin(πa)with0<a<1)⇒ ★f(a)=πnan−1sin(πn)★withn⩾2 2)wehavef′(a)=∫0∞∂∂a(1xn+an)dx=−∫0∞nan−1(xn+an)2dx =−nan−1g(a)⇒g(a)=−f(a)nan−1=−1nan−1πnan−1sin(πn)⇒ ★g(a)=−πn2a2n−2sin(πn)★ 3)wehave∫0∞dxx8+16=∫0∞dxx8+(2)8⇒n=8anda=2⇒ ∫0∞dxx8+16=π8(2)7sin(π8)alsowehave ∫0∞dx(x8+16)2=∫0∞dx(x2+(2)8)2⇒n=8anda=2atg(a)⇒ ∫0∞dx(x8+16)2=π64(2)14sin(π8)=π64.27sin(π8)with sin(π8)=2−22.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com