Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 56356 by Tawa1 last updated on 15/Mar/19

Find the minimum value of the function F(x) =  log_e x  −  x   for   x > 0.    Hence show that:   log_e x  ≤  x − 1.  For all   x > 0

FindtheminimumvalueofthefunctionF(x)=logexxforx>0. Henceshowthat:logexx1.Forallx>0

Commented byTawa1 last updated on 15/Mar/19

Answered by kaivan.ahmadi last updated on 15/Mar/19

f(x)=lnx−x⇒f′(x)=(1/x)−1=0⇒x=1  if x<1⇒(1/x)>1⇒(1/x)−1>0⇒f′(x)>0  somillarly if x>1⇒f′(x)<0  ⇒f(1)=−1 is maximum⇒  f(x)≤−1⇒lnx−x≤−1⇒  lnx≤x−1

f(x)=lnxxf(x)=1x1=0x=1 ifx<11x>11x1>0f(x)>0 somillarlyifx>1f(x)<0 f(1)=1ismaximum f(x)1lnxx1 lnxx1

Commented byTawa1 last updated on 15/Mar/19

God bless you sir

Godblessyousir

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19

((df(x))/dx)=(1/x)−1  (d^2 f/dx^2 )=((−1)/x^2 )  for min/max   (df/dx)=0  so (1/x)−1=0  x=1  at x=1 (d^2 f/dx^2 )=((−1)/1^2 )<0  so  no minimum  value...  for min (d^2 f/dx^2 )>0   and  for max (d^2 f/dx^2 )<0  so at x=1 f(x)=∣lnx−x∣_(x=1) →−1   value=−1

df(x)dx=1x1 d2fdx2=1x2 formin/maxdfdx=0 so1x1=0 x=1 atx=1d2fdx2=112<0 sonominimumvalue... formind2fdx2>0andformaxd2fdx2<0 soatx=1f(x)=∣lnxxx=11 value=1

Commented bytanmay.chaudhury50@gmail.com last updated on 15/Mar/19

Commented bytanmay.chaudhury50@gmail.com last updated on 15/Mar/19

from graph of lnx−x it is clear that f(x) hss max value at x=1 and that value is −1

fromgraphoflnxxitisclearthatf(x)hssmaxvalueatx=1andthatvalueis1

Commented byTawa1 last updated on 15/Mar/19

God bless you sir. i appreciate your effort

Godblessyousir.iappreciateyoureffort

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19

if (dg/dx)<(dh/dx)  then g(x)<h(x)  now (d/dx)(lnx)=(1/x)  (d/dx)(x−1)=1  now (1/x)−1  ((1−x)/x)<0 when x>1  so lnx<(x−1)  when x>1  at x=1  i,e ln(1)=0  (1−1)=0  (lnx)_(x=1) =(x−1)_(x=1)   when 1>x>0    lnx=−ve    (x−1)=−ve  and   ∣lnx∣>∣(x−1)∣  so lnx<(x−1) when 1>x>0  so lnx<(x−1) when x>0

ifdgdx<dhdx theng(x)<h(x) nowddx(lnx)=1x ddx(x1)=1 now1x1 1xx<0whenx>1 solnx<(x1)whenx>1 atx=1i,eln(1)=0 (11)=0 (lnx)x=1=(x1)x=1 when1>x>0 lnx=ve(x1)=ve andlnx∣>∣(x1) solnx<(x1)when1>x>0 solnx<(x1)whenx>0

Commented bytanmay.chaudhury50@gmail.com last updated on 15/Mar/19

Commented byTawa1 last updated on 15/Mar/19

God bless you sir

Godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com