Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 56356 by Tawa1 last updated on 15/Mar/19

Find the minimum value of the function F(x) =  log_e x  −  x   for   x > 0.    Hence show that:   log_e x  ≤  x − 1.  For all   x > 0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{F}\left(\mathrm{x}\right)\:=\:\:\mathrm{log}_{\mathrm{e}} \mathrm{x}\:\:−\:\:\mathrm{x}\:\:\:\mathrm{for}\:\:\:\mathrm{x}\:>\:\mathrm{0}. \\ $$ $$\:\:\mathrm{Hence}\:\mathrm{show}\:\mathrm{that}:\:\:\:\mathrm{log}_{\mathrm{e}} \mathrm{x}\:\:\leqslant\:\:\mathrm{x}\:−\:\mathrm{1}.\:\:\mathrm{For}\:\mathrm{all}\:\:\:\mathrm{x}\:>\:\mathrm{0} \\ $$

Commented byTawa1 last updated on 15/Mar/19

Answered by kaivan.ahmadi last updated on 15/Mar/19

f(x)=lnx−x⇒f′(x)=(1/x)−1=0⇒x=1  if x<1⇒(1/x)>1⇒(1/x)−1>0⇒f′(x)>0  somillarly if x>1⇒f′(x)<0  ⇒f(1)=−1 is maximum⇒  f(x)≤−1⇒lnx−x≤−1⇒  lnx≤x−1

$${f}\left({x}\right)={lnx}−{x}\Rightarrow{f}'\left({x}\right)=\frac{\mathrm{1}}{{x}}−\mathrm{1}=\mathrm{0}\Rightarrow{x}=\mathrm{1} \\ $$ $${if}\:{x}<\mathrm{1}\Rightarrow\frac{\mathrm{1}}{{x}}>\mathrm{1}\Rightarrow\frac{\mathrm{1}}{{x}}−\mathrm{1}>\mathrm{0}\Rightarrow{f}'\left({x}\right)>\mathrm{0} \\ $$ $${somillarly}\:{if}\:{x}>\mathrm{1}\Rightarrow{f}'\left({x}\right)<\mathrm{0} \\ $$ $$\Rightarrow{f}\left(\mathrm{1}\right)=−\mathrm{1}\:{is}\:{maximum}\Rightarrow \\ $$ $${f}\left({x}\right)\leqslant−\mathrm{1}\Rightarrow{lnx}−{x}\leqslant−\mathrm{1}\Rightarrow \\ $$ $${lnx}\leqslant{x}−\mathrm{1} \\ $$ $$ \\ $$ $$ \\ $$

Commented byTawa1 last updated on 15/Mar/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19

((df(x))/dx)=(1/x)−1  (d^2 f/dx^2 )=((−1)/x^2 )  for min/max   (df/dx)=0  so (1/x)−1=0  x=1  at x=1 (d^2 f/dx^2 )=((−1)/1^2 )<0  so  no minimum  value...  for min (d^2 f/dx^2 )>0   and  for max (d^2 f/dx^2 )<0  so at x=1 f(x)=∣lnx−x∣_(x=1) →−1   value=−1

$$\frac{{df}\left({x}\right)}{{dx}}=\frac{\mathrm{1}}{{x}}−\mathrm{1} \\ $$ $$\frac{{d}^{\mathrm{2}} {f}}{{dx}^{\mathrm{2}} }=\frac{−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$ $${for}\:{min}/{max}\:\:\:\frac{{df}}{{dx}}=\mathrm{0} \\ $$ $${so}\:\frac{\mathrm{1}}{{x}}−\mathrm{1}=\mathrm{0} \\ $$ $${x}=\mathrm{1} \\ $$ $${at}\:{x}=\mathrm{1}\:\frac{{d}^{\mathrm{2}} {f}}{{dx}^{\mathrm{2}} }=\frac{−\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }<\mathrm{0} \\ $$ $${so}\:\:{no}\:{minimum}\:\:{value}... \\ $$ $${for}\:{min}\:\frac{{d}^{\mathrm{2}} {f}}{{dx}^{\mathrm{2}} }>\mathrm{0}\:\:\:{and}\:\:{for}\:{max}\:\frac{{d}^{\mathrm{2}} {f}}{{dx}^{\mathrm{2}} }<\mathrm{0} \\ $$ $${so}\:{at}\:{x}=\mathrm{1}\:{f}\left({x}\right)=\mid{lnx}−{x}\mid_{{x}=\mathrm{1}} \rightarrow−\mathrm{1} \\ $$ $$\:{value}=−\mathrm{1} \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 15/Mar/19

Commented bytanmay.chaudhury50@gmail.com last updated on 15/Mar/19

from graph of lnx−x it is clear that f(x) hss max value at x=1 and that value is −1

$${from}\:{graph}\:{of}\:{lnx}−{x}\:{it}\:{is}\:{clear}\:{that}\:{f}\left({x}\right)\:{hss}\:{max}\:{value}\:{at}\:{x}=\mathrm{1}\:{and}\:{that}\:{value}\:{is}\:−\mathrm{1} \\ $$

Commented byTawa1 last updated on 15/Mar/19

God bless you sir. i appreciate your effort

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{effort} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19

if (dg/dx)<(dh/dx)  then g(x)<h(x)  now (d/dx)(lnx)=(1/x)  (d/dx)(x−1)=1  now (1/x)−1  ((1−x)/x)<0 when x>1  so lnx<(x−1)  when x>1  at x=1  i,e ln(1)=0  (1−1)=0  (lnx)_(x=1) =(x−1)_(x=1)   when 1>x>0    lnx=−ve    (x−1)=−ve  and   ∣lnx∣>∣(x−1)∣  so lnx<(x−1) when 1>x>0  so lnx<(x−1) when x>0

$${if}\:\frac{{dg}}{{dx}}<\frac{{dh}}{{dx}} \\ $$ $${then}\:{g}\left({x}\right)<{h}\left({x}\right) \\ $$ $${now}\:\frac{{d}}{{dx}}\left({lnx}\right)=\frac{\mathrm{1}}{{x}} \\ $$ $$\frac{{d}}{{dx}}\left({x}−\mathrm{1}\right)=\mathrm{1} \\ $$ $${now}\:\frac{\mathrm{1}}{{x}}−\mathrm{1} \\ $$ $$\frac{\mathrm{1}−{x}}{{x}}<\mathrm{0}\:{when}\:{x}>\mathrm{1} \\ $$ $${so}\:{lnx}<\left({x}−\mathrm{1}\right)\:\:{when}\:{x}>\mathrm{1} \\ $$ $${at}\:{x}=\mathrm{1}\:\:{i},{e}\:{ln}\left(\mathrm{1}\right)=\mathrm{0} \\ $$ $$\left(\mathrm{1}−\mathrm{1}\right)=\mathrm{0} \\ $$ $$\left({lnx}\right)_{{x}=\mathrm{1}} =\left({x}−\mathrm{1}\right)_{{x}=\mathrm{1}} \\ $$ $${when}\:\mathrm{1}>{x}>\mathrm{0}\:\: \\ $$ $${lnx}=−{ve}\:\:\:\:\left({x}−\mathrm{1}\right)=−{ve} \\ $$ $${and}\:\:\:\mid{lnx}\mid>\mid\left({x}−\mathrm{1}\right)\mid \\ $$ $${so}\:{lnx}<\left({x}−\mathrm{1}\right)\:{when}\:\mathrm{1}>{x}>\mathrm{0} \\ $$ $${so}\:{lnx}<\left({x}−\mathrm{1}\right)\:{when}\:{x}>\mathrm{0} \\ $$ $$ \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 15/Mar/19

Commented byTawa1 last updated on 15/Mar/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com