Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 56368 by Hassen_Timol last updated on 15/Mar/19

What is the common formula to obtain  the 3 solutions of a polynomial equation  in the following form ?                 ax^3  + b^2 x + cx + d = 0

Whatisthecommonformulatoobtainthe3solutionsofapolynomialequationinthefollowingform?ax3+b2x+cx+d=0

Commented by mr W last updated on 15/Mar/19

Commented by Hassen_Timol last updated on 16/Mar/19

Thank you so much!!!!!

Thankyousomuch!!!!!

Answered by MJS last updated on 15/Mar/19

1. divide by a  x^3 +(b/a)x^2 +(c/a)x+(d/a)=0  2. substitute x=z−(b/(3a))  z^3 +((3ac−b^2 )/(3a^2 ))z+((27a^2 d−9abc+2b^3 )/(27a^3 ))=0  3. substitute ((3ac−b^2 )/(3a^2 ))=p; ((27a^2 d−9abc+2b^3 )/(27a^3 ))=q  z^3 +pz+q=0  4. check resolvability  D=(p^3 /(27))+(q^2 /4)  D≥0 ⇒ Cardano′s formula  D<0 ⇒ trigonometric formula  5. solve  Cardano:  u=((−(q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3) ; v=((−(q/2)−(√((p^3 /(27))+(q^2 /4)))))^(1/3)   it′s essential to take the principal 3^(rd)  root  z_1 =u+v  z_2 =(−(1/2)−((√3)/2)i)u+(−(1/2)+((√3)/2)i)v  z_3 =(−(1/2)+((√3)/2)i)u+(−(1/2)−((√3)/2)i)v  trigonometric:  z_n =(2/3)(√(−3p)) sin (((2π)/3)n+(1/3)arcsin ((3(√3)q)/(2(√(−p^3 ))))) with n=1, 2, 3

1.dividebyax3+bax2+cax+da=02.substitutex=zb3az3+3acb23a2z+27a2d9abc+2b327a3=03.substitute3acb23a2=p;27a2d9abc+2b327a3=qz3+pz+q=04.checkresolvabilityD=p327+q24D0CardanosformulaD<0trigonometricformula5.solveCardano:u=q2+p327+q243;v=q2p327+q243itsessentialtotaketheprincipal3rdrootz1=u+vz2=(1232i)u+(12+32i)vz3=(12+32i)u+(1232i)vtrigonometric:zn=233psin(2π3n+13arcsin33q2p3)withn=1,2,3

Commented by Hassen_Timol last updated on 16/Mar/19

Thanks a lot...

Thanksalot...

Commented by mr W last updated on 16/Mar/19

very nice summary! thanks sir!

verynicesummary!thankssir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com