Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 5638 by Daily last updated on 23/May/16

If a≤ 0, then the real values of x  satisfying x^2 −2a ∣ x−a ∣−3a^2 =0 are

$$\mathrm{If}\:{a}\leqslant\:\mathrm{0},\:\mathrm{then}\:\mathrm{the}\:\mathrm{real}\:\mathrm{values}\:\mathrm{of}\:{x} \\ $$$$\mathrm{satisfying}\:{x}^{\mathrm{2}} −\mathrm{2}{a}\:\mid\:{x}−{a}\:\mid−\mathrm{3}{a}^{\mathrm{2}} =\mathrm{0}\:\mathrm{are} \\ $$

Answered by Yozzii last updated on 23/May/16

We can look for solutions based on  intervals that cover the entire real line.  a≤0 is some fixed real value.  If x−a>0 or x>a⇒∣x−a∣=x−a.  ∴ x^2 −2a(x−a)−3a^2 =0  x^2 −2ax−a^2 =0  x^2 −2ax+a^2 −2a^2 =0  (x−a)^2 =2a^2   ⇒x=a±(√2)(√a^2 )  x=a±(√2)∣a∣ which are real values of x.  a≤0⇒∣a∣=−a⇒x=(1±(√2))a  Now x>a⇒ x≠(1+(√2))a but x=(1−(√2))a  since a≤0.{a≤0⇒(1−(√2))a≥0≥a or x≥a}    If x=a≤0 the equation gives  a^2 −3a^2 =0⇒2a^2 =0. This is true only if a=0.  ∴ x=0 is possible.    If x−a<0⇒x<a⇒∣x−a∣=a−x.  ∴ x^2 −2a(a−x)−3a^2 =0  x^2 +2ax−5a^2 =0  x^2 +2ax+a^2 −6a^2 =0  (x+a)^2 =6a^2   ⇒x=−a±(√6)∣a∣=a(−1±(√6))  Since a≤0 and x<a⇒x≠(−1−(√6))a  but x=a((√6)−1).    ∴ If a=0 the quadratic equation has  two equal roots then x=0. If a≠0 then   x=((√6)−1)a or x=(1−(√2))a.

$${We}\:{can}\:{look}\:{for}\:{solutions}\:{based}\:{on} \\ $$$${intervals}\:{that}\:{cover}\:{the}\:{entire}\:{real}\:{line}. \\ $$$${a}\leqslant\mathrm{0}\:{is}\:{some}\:{fixed}\:{real}\:{value}. \\ $$$${If}\:{x}−{a}>\mathrm{0}\:{or}\:{x}>{a}\Rightarrow\mid{x}−{a}\mid={x}−{a}. \\ $$$$\therefore\:{x}^{\mathrm{2}} −\mathrm{2}{a}\left({x}−{a}\right)−\mathrm{3}{a}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{ax}−{a}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{ax}+{a}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({x}−{a}\right)^{\mathrm{2}} =\mathrm{2}{a}^{\mathrm{2}} \\ $$$$\Rightarrow{x}={a}\pm\sqrt{\mathrm{2}}\sqrt{{a}^{\mathrm{2}} } \\ $$$${x}={a}\pm\sqrt{\mathrm{2}}\mid{a}\mid\:{which}\:{are}\:{real}\:{values}\:{of}\:{x}. \\ $$$${a}\leqslant\mathrm{0}\Rightarrow\mid{a}\mid=−{a}\Rightarrow{x}=\left(\mathrm{1}\pm\sqrt{\mathrm{2}}\right){a} \\ $$$${Now}\:{x}>{a}\Rightarrow\:{x}\neq\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){a}\:{but}\:{x}=\left(\mathrm{1}−\sqrt{\mathrm{2}}\right){a} \\ $$$${since}\:{a}\leqslant\mathrm{0}.\left\{{a}\leqslant\mathrm{0}\Rightarrow\left(\mathrm{1}−\sqrt{\mathrm{2}}\right){a}\geqslant\mathrm{0}\geqslant{a}\:{or}\:{x}\geqslant{a}\right\} \\ $$$$ \\ $$$${If}\:{x}={a}\leqslant\mathrm{0}\:{the}\:{equation}\:{gives} \\ $$$${a}^{\mathrm{2}} −\mathrm{3}{a}^{\mathrm{2}} =\mathrm{0}\Rightarrow\mathrm{2}{a}^{\mathrm{2}} =\mathrm{0}.\:{This}\:{is}\:{true}\:{only}\:{if}\:{a}=\mathrm{0}. \\ $$$$\therefore\:{x}=\mathrm{0}\:{is}\:{possible}. \\ $$$$ \\ $$$${If}\:{x}−{a}<\mathrm{0}\Rightarrow{x}<{a}\Rightarrow\mid{x}−{a}\mid={a}−{x}. \\ $$$$\therefore\:{x}^{\mathrm{2}} −\mathrm{2}{a}\left({a}−{x}\right)−\mathrm{3}{a}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}{ax}−\mathrm{5}{a}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}{ax}+{a}^{\mathrm{2}} −\mathrm{6}{a}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({x}+{a}\right)^{\mathrm{2}} =\mathrm{6}{a}^{\mathrm{2}} \\ $$$$\Rightarrow{x}=−{a}\pm\sqrt{\mathrm{6}}\mid{a}\mid={a}\left(−\mathrm{1}\pm\sqrt{\mathrm{6}}\right) \\ $$$${Since}\:{a}\leqslant\mathrm{0}\:{and}\:{x}<{a}\Rightarrow{x}\neq\left(−\mathrm{1}−\sqrt{\mathrm{6}}\right){a} \\ $$$${but}\:{x}={a}\left(\sqrt{\mathrm{6}}−\mathrm{1}\right). \\ $$$$ \\ $$$$\therefore\:{If}\:{a}=\mathrm{0}\:{the}\:{quadratic}\:{equation}\:{has} \\ $$$${two}\:{equal}\:{roots}\:{then}\:{x}=\mathrm{0}.\:{If}\:{a}\neq\mathrm{0}\:{then}\: \\ $$$${x}=\left(\sqrt{\mathrm{6}}−\mathrm{1}\right){a}\:{or}\:{x}=\left(\mathrm{1}−\sqrt{\mathrm{2}}\right){a}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com