Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 56383 by Tawa1 last updated on 15/Mar/19

Commented by Tawa1 last updated on 16/Mar/19

God bless you sir

Godblessyousir

Commented by maxmathsup by imad last updated on 15/Mar/19

∫_(−1) ^7   (dx/((^3 (√(x+1)))))dx =_(x+1 =t^3 )    ∫_0 ^(2(√2))    ((3t^2 dt)/t) =3 ∫_0 ^(2(√2)) tdt =3[(t^2 /2)]_0 ^(2(√2))   =(3/2){2(√2))^2  =12.

17dx(3x+1)dx=x+1=t30223t2dtt=3022tdt=3[t22]022=32{22)2=12.

Commented by maxmathsup by imad last updated on 16/Mar/19

we can use the result ∫_0 ^∞   (t^(a−1) /(1+t))dt =(π/(sin(πa)))  with 0<a<1 so  changement x =t^(1/4)   give ∫_0 ^∞   (dx/(1+x^4 )) =∫_0 ^∞   (1/(4(1+t))) t^((1/4)−1) dt  =(1/4) (π/(sin((π/4)))) =(π/(4 ((√2)/2))) =(π/(2(√2))) .

wecanusetheresult0ta11+tdt=πsin(πa)with0<a<1sochangementx=t14give0dx1+x4=014(1+t)t141dt=14πsin(π4)=π422=π22.

Commented by Abdo msup. last updated on 16/Mar/19

thank you so much sir.

thankyousomuchsir.

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19

∫(dx/(x^4 +1))  (1/2)∫((2/x^2 )/(x^2 +(1/x^2 )))dx  (1/2)∫((1+(1/x^2 )−(1−(1/x^2 )))/(x^2 +(1/x^2 )))dx  (1/2)∫((d(x−(1/x)))/((x−(1/x))^2 +2))−(1/2)∫((d(x+(1/x)))/((x+(1/x))^2 −2))  ∣(1/2)×(1/(√2))tan^(−1) (((x−(1/x))/(√2)))−(1/2)×(1/(2(√2)))ln(((x+(1/x)−(√2))/(x+(1/x)+(√2))))∣_0 ^∞   ∣(1/(2(√2)))tan^(−1) (((1−(1/x^2 ))/(((√2) )/x)))−(1/(4(√2)))ln(((1+(1/x^2 )−((√2)/x))/(1+(1/x^2 )+((√2)/x))))∣_0 ^∞   now putting x=∞→(1/(2(√2)))tan^(−1) (((1−0)/0))−(1/(4(√2)))ln(((1+0−0)/(1+0+0)))  =(1/(2(√2)))×(π/2)=(π/(4(√2)))  now again adjustment to put x=0  (1/(2(√2)))tan^(−1) (((x−(1/x))/(√2)))−(1/(4(√2)))ln(((x^2 +1−x(√2))/(x^2 +1+x(√2)))) now put  x=0  (1/(2(√2)))tan^(−1) (−∞)→(1/(2(√2)))×(−(π/2))  so answer is  (π/(4(√2)))−(−(π/(4(√2))))→2×(π/(4(√2)))=(π/(2(√2)))

dxx4+1122x2x2+1x2dx121+1x2(11x2)x2+1x2dx12d(x1x)(x1x)2+212d(x+1x)(x+1x)2212×12tan1(x1x2)12×122ln(x+1x2x+1x+2)0122tan1(11x22x)142ln(1+1x22x1+1x2+2x)0nowputtingx=122tan1(100)142ln(1+001+0+0)=122×π2=π42nowagainadjustmenttoputx=0122tan1(x1x2)142ln(x2+1x2x2+1+x2)nowputx=0122tan1()122×(π2)soanswerisπ42(π42)2×π42=π22

Commented by Tawa1 last updated on 15/Mar/19

God bless you sir

Godblessyousir

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19

lim_(a→−1) ∫_a ^7 (dx/((1+x)^(1/3) ))  lim_(a→−1) ∣(((1+x)^(((−1)/3)+1) )/(2/3))∣_a ^7   =lim_(a→−1) [(3/2)(8)^(2/3) −(3/2)(1+a)^(2/3) ]  =(3/2)×4→6 ans

lima1a7dx(1+x)13lima1(1+x)13+123a7=lima1[32(8)2332(1+a)23]=32×46ans

Commented by Tawa1 last updated on 15/Mar/19

God bless you sir.

Godblessyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com