Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 56390 by Tinkutara last updated on 15/Mar/19

Commented by Tinkutara last updated on 18/Mar/19

Answer is

Commented by Tinkutara last updated on 18/Mar/19

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Mar/19

A(1,2)  B((√(5 )) cosθ,(√5) sinθ)  C((√5) sinθ,−(√5) cosθ)  slope of AB →m_1 =(((√5) sinθ−2)/((√5) cosθ−1))  slope BC→m_2 =(((√5) sinθ+(√5) cosθ)/((√5) cosθ−(√5) sinθ))=((1+tanθ)/(1−tanθ))=tan((π/4)+θ)  slope of CA→m_3 =((2+(√5) cosθ)/(1−(√5) sinθ))  eqn st line ⊥BC and passing through  eqn AD⊥BC  (y−2)=(((−1)/m_2 ))(x−1)  (y−2)=(((tanθ−1)/(tanθ+1)))(x−1)  eqn BE⊥AC  (y−(√5) sinθ)=−((1/m_3 ))(x−(√5) cosθ)  (y−(√5) sinθ)=((((√5) sinθ−1)/(2+(√5) cosθ)))(x−(√5) cosθ)  solving eqn AD and BE we get ortho centre  2+(((tanθ−1)/(tanθ+1)))(x−1)=(√5) sinθ+((((√5) sinθ−1)/(2+(√5) cosθ)))(x−(√5) cosθ)  for easy of simplificatiin (√5) sinθ=a  (√5) cosθ=b   tanθ=(a/b)  2+((((a/b)−1)/((a/b)+1)))(x−1)=a+(((a−1)/(2+b)))(x−b)  2+x(((a−b)/(a+b)))−(((a−b)/(a+b)))=a+x(((a−1)/(2+b)))−b(((a−1)/(2+b)))  x{(((a−b)/(a+b)))−(((a−1)/(2+b)))}=a−b(((a−1)/(2+b)))−2+((a−b)/(a+b))  x{((2a−2b+ab−b^2 −a^2 −ab+a+b)/((a+b)(2+b))}=((a(2a+2b+ab+b^2 )−b(a^2 +ab−a−b)−2(2a+2b+ab+b^2 )+(2a+ab−2b−b^2 ))/((2+b)(a+b)))  x(3a−b−b^2 −a^2 )=4a+4b+a^2 b+ab^2 −a^2 b−ab^2 +ab+b^2 −4a−4b−2ab−b^2 +2a+ab−2b−b^2   x(3a−b−b^2 −a^2 )=2a−2b+ab+b^2 −2ab−b^2 +ab−b^2   x(3a−b−b^2 −a^2 )=2a−2b−b^2   x=((2a−2b−b^2 )/(3a−b−a^2 −b^2 ))  [a=(√5) sinθ   b=(√5) cosθ]  pls check upto this lengthy question...

$${A}\left(\mathrm{1},\mathrm{2}\right)\:\:{B}\left(\sqrt{\mathrm{5}\:}\:{cos}\theta,\sqrt{\mathrm{5}}\:{sin}\theta\right)\:\:{C}\left(\sqrt{\mathrm{5}}\:{sin}\theta,−\sqrt{\mathrm{5}}\:{cos}\theta\right) \\ $$$${slope}\:{of}\:{AB}\:\rightarrow{m}_{\mathrm{1}} =\frac{\sqrt{\mathrm{5}}\:{sin}\theta−\mathrm{2}}{\sqrt{\mathrm{5}}\:{cos}\theta−\mathrm{1}} \\ $$$${slope}\:{BC}\rightarrow{m}_{\mathrm{2}} =\frac{\sqrt{\mathrm{5}}\:{sin}\theta+\sqrt{\mathrm{5}}\:{cos}\theta}{\sqrt{\mathrm{5}}\:{cos}\theta−\sqrt{\mathrm{5}}\:{sin}\theta}=\frac{\mathrm{1}+{tan}\theta}{\mathrm{1}−{tan}\theta}={tan}\left(\frac{\pi}{\mathrm{4}}+\theta\right) \\ $$$${slope}\:{of}\:{CA}\rightarrow{m}_{\mathrm{3}} =\frac{\mathrm{2}+\sqrt{\mathrm{5}}\:{cos}\theta}{\mathrm{1}−\sqrt{\mathrm{5}}\:{sin}\theta} \\ $$$${eqn}\:{st}\:{line}\:\bot{BC}\:{and}\:{passing}\:{through} \\ $$$${eqn}\:{AD}\bot{BC}\:\:\left({y}−\mathrm{2}\right)=\left(\frac{−\mathrm{1}}{{m}_{\mathrm{2}} }\right)\left({x}−\mathrm{1}\right) \\ $$$$\left({y}−\mathrm{2}\right)=\left(\frac{{tan}\theta−\mathrm{1}}{{tan}\theta+\mathrm{1}}\right)\left({x}−\mathrm{1}\right) \\ $$$${eqn}\:{BE}\bot{AC} \\ $$$$\left({y}−\sqrt{\mathrm{5}}\:{sin}\theta\right)=−\left(\frac{\mathrm{1}}{{m}_{\mathrm{3}} }\right)\left({x}−\sqrt{\mathrm{5}}\:{cos}\theta\right) \\ $$$$\left({y}−\sqrt{\mathrm{5}}\:{sin}\theta\right)=\left(\frac{\sqrt{\mathrm{5}}\:{sin}\theta−\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{5}}\:{cos}\theta}\right)\left({x}−\sqrt{\mathrm{5}}\:{cos}\theta\right) \\ $$$${solving}\:{eqn}\:{AD}\:{and}\:{BE}\:{we}\:{get}\:{ortho}\:{centre} \\ $$$$\mathrm{2}+\left(\frac{{tan}\theta−\mathrm{1}}{{tan}\theta+\mathrm{1}}\right)\left({x}−\mathrm{1}\right)=\sqrt{\mathrm{5}}\:{sin}\theta+\left(\frac{\sqrt{\mathrm{5}}\:{sin}\theta−\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{5}}\:{cos}\theta}\right)\left({x}−\sqrt{\mathrm{5}}\:{cos}\theta\right) \\ $$$${for}\:{easy}\:{of}\:{simplificatiin}\:\sqrt{\mathrm{5}}\:{sin}\theta={a} \\ $$$$\sqrt{\mathrm{5}}\:{cos}\theta={b}\:\:\:{tan}\theta=\frac{{a}}{{b}} \\ $$$$\mathrm{2}+\left(\frac{\frac{{a}}{{b}}−\mathrm{1}}{\frac{{a}}{{b}}+\mathrm{1}}\right)\left({x}−\mathrm{1}\right)={a}+\left(\frac{{a}−\mathrm{1}}{\mathrm{2}+{b}}\right)\left({x}−{b}\right) \\ $$$$\mathrm{2}+{x}\left(\frac{{a}−{b}}{{a}+{b}}\right)−\left(\frac{{a}−{b}}{{a}+{b}}\right)={a}+{x}\left(\frac{{a}−\mathrm{1}}{\mathrm{2}+{b}}\right)−{b}\left(\frac{{a}−\mathrm{1}}{\mathrm{2}+{b}}\right) \\ $$$${x}\left\{\left(\frac{{a}−{b}}{{a}+{b}}\right)−\left(\frac{{a}−\mathrm{1}}{\mathrm{2}+{b}}\right)\right\}={a}−{b}\left(\frac{{a}−\mathrm{1}}{\mathrm{2}+{b}}\right)−\mathrm{2}+\frac{{a}−{b}}{{a}+{b}} \\ $$$${x}\left\{\frac{\mathrm{2}{a}−\mathrm{2}{b}+{ab}−{b}^{\mathrm{2}} −{a}^{\mathrm{2}} −{ab}+{a}+{b}}{\left({a}+{b}\right)\left(\mathrm{2}+{b}\right.}\right\}=\frac{{a}\left(\mathrm{2}{a}+\mathrm{2}{b}+{ab}+{b}^{\mathrm{2}} \right)−{b}\left({a}^{\mathrm{2}} +{ab}−{a}−{b}\right)−\mathrm{2}\left(\mathrm{2}{a}+\mathrm{2}{b}+{ab}+{b}^{\mathrm{2}} \right)+\left(\mathrm{2}{a}+{ab}−\mathrm{2}{b}−{b}^{\mathrm{2}} \right)}{\left(\mathrm{2}+{b}\right)\left({a}+{b}\right)} \\ $$$${x}\left(\mathrm{3}{a}−{b}−{b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)=\mathrm{4}{a}+\mathrm{4}{b}+{a}^{\mathrm{2}} {b}+{ab}^{\mathrm{2}} −{a}^{\mathrm{2}} {b}−{ab}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} −\mathrm{4}{a}−\mathrm{4}{b}−\mathrm{2}{ab}−{b}^{\mathrm{2}} +\mathrm{2}{a}+{ab}−\mathrm{2}{b}−{b}^{\mathrm{2}} \\ $$$${x}\left(\mathrm{3}{a}−{b}−{b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)=\mathrm{2}{a}−\mathrm{2}{b}+{ab}+{b}^{\mathrm{2}} −\mathrm{2}{ab}−{b}^{\mathrm{2}} +{ab}−{b}^{\mathrm{2}} \\ $$$${x}\left(\mathrm{3}{a}−{b}−{b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)=\mathrm{2}{a}−\mathrm{2}{b}−{b}^{\mathrm{2}} \\ $$$${x}=\frac{\mathrm{2}{a}−\mathrm{2}{b}−{b}^{\mathrm{2}} }{\mathrm{3}{a}−{b}−{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:\:\left[{a}=\sqrt{\mathrm{5}}\:{sin}\theta\:\:\:{b}=\sqrt{\mathrm{5}}\:{cos}\theta\right] \\ $$$${pls}\:{check}\:{upto}\:{this}\:{lengthy}\:{question}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com