Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 56392 by otchereabdullai@gmail.com last updated on 15/Mar/19

find the integral of  ∫x(√(x−1))dx

findtheintegralofxx1dx

Commented by maxmathsup by imad last updated on 16/Mar/19

changement (√(x−1))=t give x−1 =t^2  ⇒  ∫ x(√(x−1))dx =∫ (1+t^2 )t (2t)dt =2 ∫ (t^2  +t^4 )dt =(2/3)t^3  +(2/5)t^5  +c  =(2/3)((√(x−1)))^3  +(2/5)((√(x−1))))^5  +c .  =(2/3)(x−1)(√(x−1)) +(2/5)(x−1)^2 (√(x−1))+c .

changementx1=tgivex1=t2xx1dx=(1+t2)t(2t)dt=2(t2+t4)dt=23t3+25t5+c=23(x1)3+25(x1))5+c.=23(x1)x1+25(x1)2x1+c.

Commented by otchereabdullai@gmail.com last updated on 16/Mar/19

thank you sir!

thankyousir!

Answered by kaivan.ahmadi last updated on 15/Mar/19

u=x−1⇒du=dx and x=u+1  ∫(u+1)(√u)du=∫u(√u)du+∫(√u)du=  ∫u^(3/2) du+∫u^(1/2) du=((2u^(5/2) )/5)+((2u^(3/2) )/3)+C=  ((2(x−1)^2 (√(x−1)))/5)+((2(x−1)(√(x−1)))/3)+C

u=x1du=dxandx=u+1(u+1)udu=uudu+udu=u32du+u12du=2u525+2u323+C=2(x1)2x15+2(x1)x13+C

Commented by otchereabdullai@gmail.com last updated on 16/Mar/19

thank you sir

thankyousir

Answered by MJS last updated on 15/Mar/19

∫x(√(x−1))dx=       [t=x−1 → dx=dt]  =∫(t+1)(√t)dt=∫t^(3/2) dt+∫t^(1/2) dt=(2/5)t^(5/2) +(2/3)t^(3/2) =  =(2/(15))t^(3/2) (3t+5)=(2/(15))(3x+2)(√((x−1)^3 ))+C

xx1dx=[t=x1dx=dt]=(t+1)tdt=t32dt+t12dt=25t52+23t32==215t32(3t+5)=215(3x+2)(x1)3+C

Commented by otchereabdullai@gmail.com last updated on 16/Mar/19

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com