Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 56411 by gunawan last updated on 16/Mar/19

For a sequence <a_n > ; a_1 =2, (a_(n+1) /a_n ) = (1/3),  then Σ_(r=1) ^(20)  a_r  is equal to

Forasequence<an>;a1=2,an+1an=13, then20r=1arisequalto

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Mar/19

(a_2 /a_1 )=(1/3)=(a_2 /2)→a_2 =(2/3)  (a_3 /a_2 )=(1/3)=(a_3 /(2/3))→a_3 =(2/3^2 )  (a_4 /a_3 )=(1/3)=(a_4 /(2/3^2 ))→a_4 =(2/3^3 )  S_n =a_1 +a_2 +a_3 +...+a_n   =(2/1)+(2/3)+(2/3^2 )+...+(2/3^(n−1) )  A=2   r=(1/3)    S_n =((2(1−(1/3^n )))/(1−(1/3)))→((2(1−(1/3^n )))/(2/3))→3(1−(1/3^n ))  so s_(20) =3(1−(1/3^(20) ))

a2a1=13=a22a2=23 a3a2=13=a323a3=232 a4a3=13=a4232a4=233 Sn=a1+a2+a3+...+an =21+23+232+...+23n1 A=2r=13 Sn=2(113n)1132(113n)233(113n) sos20=3(11320)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com