All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 56471 by harish 12@g last updated on 17/Mar/19
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Mar/19
∫0πxdxa2cos2x+b2sin2xdx=II=∫0π(π−x)a2cos2(π−x)+b2sin2(π−x)dx=∫0ππ−xa2cos2x+b2sin2xdx2I=∫0ππ−x+xa2cos2x+b2sin2xdx2Iπ=∫0πdxcos2x(a2+b2tan2x)dx2Iπ=∫0πsec2xdxa2+b2tan2xdx2Iπ=1b2∫0πsec2xdx(ab)2+tan2xdxnow∫02af(x)dx=2∫0af(x)dxwhenf(2a−x)=f(x)2Iπ=2b2∫0π2sec2xdx(ab)2+tan2xdxtanx=abtanpsec2xdx=absec2pdpb2Iπ=∫0π2absec2p(a2b2)(1+tan2p)dpb2Iπ=ba∫0π2dpabIπ=∣p∣0π2abIπ=π2soI=π22abproved
Terms of Service
Privacy Policy
Contact: info@tinkutara.com