Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 56479 by Tawa1 last updated on 17/Mar/19

Please is there any way to reduce a polynomial of  4th degree  and solve.  Or probably a polynomial of   nth power to smaller  power.

Pleaseisthereanywaytoreduceapolynomialof4thdegreeandsolve.Orprobablyapolynomialofnthpowertosmallerpower.

Answered by ajfour last updated on 17/Mar/19

    x^4 +ax^3 +bx^2 +cx+d=0  let  x=t−(a/4)  t^4 −at^3 +(3/8)a^2 t^2 −(a^3 /(16))t+(a^4 /(256))  +at^3 −((3a^2 )/4)t^2 +((3a^3 )/(16))t−(a^4 /(64))  +bt^2 −((ab)/2)t+((a^2 b)/(16))+ct−((ac)/4)+d=0  ⇒  t^4 +(b−((3a^2 )/8))t^2 +((a^3 /8)−((ab)/2)+c)t             +(((3a^4 )/(256))+((a^2 b)/(16))−((ac)/4)+d)=0  Say we have now      t^4 +Bt^2 +Ct+D     = (t^2 +pt+q)(t^2 −pt+r)=0  ⇒  t^4 +(r−p^2 +q)t^2 +p(r−q)t+qr=0  ⇒   q+r=B+p^2           r−q=C/p                   qr=D  ⇒   2r=(B+p^2 )+(C/p)       ...(i)         2q=(B+p^2 )−(C/p)        ...(ii)  ⇒     (B+p^2 )^2 −(C^( 2) /p^2 )=4D      let  p^2 =z  ⇒   z(B+z)^2 −4Dz−C^( 2) =0  ⇒ z^3 +2Bz^2 +(B^2 −4D)z−C^( 2) =0  Find z=p^2  from above eq.  Then using (i)&(ii) obtain  q and r.  Now we have    (t^2 +pt+q)(t^2 −pt+r)=0  ⇒  t=−(p/2)±(√((p^2 /4)−q))   or          t= (p/2)±(√((p^2 /4)−r))    &    x=t−(a/4) .

x4+ax3+bx2+cx+d=0letx=ta4t4at3+38a2t2a316t+a4256+at33a24t2+3a316ta464+bt2ab2t+a2b16+ctac4+d=0t4+(b3a28)t2+(a38ab2+c)t+(3a4256+a2b16ac4+d)=0Saywehavenowt4+Bt2+Ct+D=(t2+pt+q)(t2pt+r)=0t4+(rp2+q)t2+p(rq)t+qr=0q+r=B+p2rq=C/pqr=D2r=(B+p2)+Cp...(i)2q=(B+p2)Cp...(ii)(B+p2)2C2p2=4Dletp2=zz(B+z)24DzC2=0z3+2Bz2+(B24D)zC2=0Findz=p2fromaboveeq.Thenusing(i)&(ii)obtainqandr.Nowwehave(t2+pt+q)(t2pt+r)=0t=p2±p24qort=p2±p24r&x=ta4.

Commented by Tawa1 last updated on 17/Mar/19

God bless you sir,  i look forward for the success sir

Godblessyousir,ilookforwardforthesuccesssir

Commented by ajfour last updated on 17/Mar/19

Or after        t^4 +Bt^2 +Ct+D=0  we let    x=((pt+q)/(t+1))   then    (pt+q)^4 +B(pt+q)^2 (t+1)^2 +         C(pt+q)(t+1)^3 +D(t+1)^4 =0  ⇒     p^4 t^4 +4p^3 qt^3 +6p^2 q^2 t^2 +4pq^3 t+q^4   + B(p^2 t^2 +2pqt+q^2 )(t^2 +2t+1)+    C(pt+q)(t^3 +3t^2 +3t+1)+    D(t^4 +4t^3 +6t^2 +4t+1)=0  ⇒  __________________________     (p^4 +Bp^2 +Cp+D)t^4 +      (4p^3 q+2Bp^2 +2Bpq+3Cp+Cq+4D)t^3   +(6p^2 q^2 +Bp^2 +4Bpq+Bq^2 +3Cp+3Cq+6D)t^2   +(4pq^3 +2Bpq+2Bq^2 +Cp+3Cq+4D)t  +(q^4 +Bq^2 +Cq+D)=0  __________________________  & if we let coefficients of t^3  & t  to be zero we obtain a quadratic  in t^2 .   4p^3 q+2Bp^2 +2Bpq+3Cp+Cq+4D=0   4pq^3 +2Bpq+2Bq^2 +Cp+3Cq+4D=0  subtracting we get   4pq(p+q)+2B(p+q)+2C=0  ..(I)  And adding we get  (4pq+2B)(p^2 +q^2 )+4Bpq+        4C(p+q)+8D=0                 ...(II)  Solving this pair  of eqs. (I)&(II),   we′d have reduced a   biquadratic to a quadratic.  rewriting eq. (II)  (4pq+2B)[(p+q)^2 −2pq]+4Bpq         +4C(p+q)+8D=0  ⇒  4C(p+q)+8D=−(4pq+2B)(p+q)^2   using (I) herein  ⇒ 4C(p+q)+8D=2(p+q)[C+B(p+q)]  ⇒ B(p+q)^2 −C(p+q)−4D=0  ⇒   p+q = (C/2)±(√((C^( 2) /4)+4D))  = k      pq = −(B/2)−(C/(2(p+q)))            = −(B/2)−(C/(2k)) = l   p, q are roots of           z^2 −kz+l=0  p, q = (k/2)±(√((k^2 /4)−l))  Now we have     (p^4 +Bp^2 +Cp+D)t^4   +(6p^2 q^2 +Bp^2 +4Bpq+Bq^2 +3Cp+3Cq+6D)t^2   +(q^4 +Bq^2 +Cq+D)=0     which is a quadratic in t^2 ,  and can be solved.  And   x=((pt+q)/(t+1)).                                  ■

Oraftert4+Bt2+Ct+D=0weletx=pt+qt+1then(pt+q)4+B(pt+q)2(t+1)2+C(pt+q)(t+1)3+D(t+1)4=0p4t4+4p3qt3+6p2q2t2+4pq3t+q4+B(p2t2+2pqt+q2)(t2+2t+1)+C(pt+q)(t3+3t2+3t+1)+D(t4+4t3+6t2+4t+1)=0__________________________(p4+Bp2+Cp+D)t4+(4p3q+2Bp2+2Bpq+3Cp+Cq+4D)t3+(6p2q2+Bp2+4Bpq+Bq2+3Cp+3Cq+6D)t2+(4pq3+2Bpq+2Bq2+Cp+3Cq+4D)t+(q4+Bq2+Cq+D)=0__________________________&ifweletcoefficientsoft3&ttobezeroweobtainaquadraticint2.4p3q+2Bp2+2Bpq+3Cp+Cq+4D=04pq3+2Bpq+2Bq2+Cp+3Cq+4D=0subtractingweget4pq(p+q)+2B(p+q)+2C=0..(I)Andaddingweget(4pq+2B)(p2+q2)+4Bpq+4C(p+q)+8D=0...(II)Solvingthispairofeqs.(I)&(II),wedhavereducedabiquadratictoaquadratic.rewritingeq.(II)(4pq+2B)[(p+q)22pq]+4Bpq+4C(p+q)+8D=04C(p+q)+8D=(4pq+2B)(p+q)2using(I)herein4C(p+q)+8D=2(p+q)[C+B(p+q)]B(p+q)2C(p+q)4D=0p+q=C2±C24+4D=kpq=B2C2(p+q)=B2C2k=lp,qarerootsofz2kz+l=0p,q=k2±k24lNowwehave(p4+Bp2+Cp+D)t4+(6p2q2+Bp2+4Bpq+Bq2+3Cp+3Cq+6D)t2+(q4+Bq2+Cq+D)=0whichisaquadraticint2,andcanbesolved.Andx=pt+qt+1.

Commented by Tawa1 last updated on 17/Mar/19

Wow, God bless you sir. I appreciate ...

Wow,Godblessyousir.Iappreciate...

Commented by Tawa1 last updated on 17/Mar/19

Sir, please if the power is  5 or higher. can we still deduce.  Thanks for your time sir.

Sir,pleaseifthepoweris5orhigher.canwestilldeduce.Thanksforyourtimesir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com