Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 56498 by kelly33 last updated on 17/Mar/19

It is known that 5π<α<((13π)/2).  cosα=−(1/4)  calculate  sin2α

$${It}\:{is}\:{known}\:{that}\:\mathrm{5}\pi<\alpha<\frac{\mathrm{13}\pi}{\mathrm{2}}.\:\:{cos}\alpha=−\frac{\mathrm{1}}{\mathrm{4}} \\ $$ $${calculate}\:\:{sin}\mathrm{2}\alpha \\ $$ $$ \\ $$

Commented bykelly33 last updated on 17/Mar/19

please help me

$${please}\:{help}\:{me} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Mar/19

sin2α=2sinαcosα    ignoring sign           sinα=((√(15))/4)  now   5π<α<((13π)/2)  so      10π<2α<13π            (5×2π)<2α<(6×2π+π)  so 2α lies in second quadrant  so sin2α=2×((√(15))/4)×(1/4)=((√(15))/8)  i think question itself has some error..     it shoud be 6π<α<((13π)/2)

$${sin}\mathrm{2}\alpha=\mathrm{2}{sin}\alpha{cos}\alpha \\ $$ $$ \\ $$ $${ignoring}\:{sign}\:\:\:\:\:\:\:\:\:\:\:{sin}\alpha=\frac{\sqrt{\mathrm{15}}}{\mathrm{4}} \\ $$ $${now}\:\:\:\mathrm{5}\pi<\alpha<\frac{\mathrm{13}\pi}{\mathrm{2}} \\ $$ $${so}\:\:\:\:\:\:\mathrm{10}\pi<\mathrm{2}\alpha<\mathrm{13}\pi \\ $$ $$\:\:\:\:\:\:\:\:\:\:\left(\mathrm{5}×\mathrm{2}\pi\right)<\mathrm{2}\alpha<\left(\mathrm{6}×\mathrm{2}\pi+\pi\right) \\ $$ $${so}\:\mathrm{2}\alpha\:{lies}\:{in}\:{second}\:{quadrant} \\ $$ $${so}\:{sin}\mathrm{2}\alpha=\mathrm{2}×\frac{\sqrt{\mathrm{15}}}{\mathrm{4}}×\frac{\mathrm{1}}{\mathrm{4}}=\frac{\sqrt{\mathrm{15}}}{\mathrm{8}} \\ $$ $${i}\:{think}\:{question}\:{itself}\:{has}\:{some}\:{error}.. \\ $$ $$\:\:\:\boldsymbol{{it}}\:\boldsymbol{{shoud}}\:\boldsymbol{{be}}\:\mathrm{6}\pi<\alpha<\frac{\mathrm{13}\pi}{\mathrm{2}} \\ $$

Commented byMJS last updated on 17/Mar/19

cos α =−(1/4) ⇒ α=2πn±((π/2)+arcsin (1/4))  5π<α<((13π)/2) ⇒ α=((11π)/2)−arcsin (1/4)  sin 2α =((√(15))/8)

$$\mathrm{cos}\:\alpha\:=−\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow\:\alpha=\mathrm{2}\pi{n}\pm\left(\frac{\pi}{\mathrm{2}}+\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$ $$\mathrm{5}\pi<\alpha<\frac{\mathrm{13}\pi}{\mathrm{2}}\:\Rightarrow\:\alpha=\frac{\mathrm{11}\pi}{\mathrm{2}}−\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$ $$\mathrm{sin}\:\mathrm{2}\alpha\:=\frac{\sqrt{\mathrm{15}}}{\mathrm{8}} \\ $$

Commented bykelly33 last updated on 18/Mar/19

α=2πn±((π/2)+arcsin(1/4))  where did this formula come from?

$$\alpha=\mathrm{2}\pi{n}\pm\left(\frac{\pi}{\mathrm{2}}+{arcsin}\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$ $${where}\:{did}\:{this}\:{formula}\:{come}\:{from}? \\ $$

Commented byMJS last updated on 19/Mar/19

arccos (−x) =±((π/2)+arcsin x)  this should be clear...  but cos α has a period of 2π  cos α =−(1/4)  cos (α+2πn) =−(1/4); n∈Z  α+2πn=arccos (−(1/4))  α+2πn=±((π/2)+arcsin (1/4))  α=−2πn±((π/2)+arcsin (1/4)) but n∈Z ⇒  ⇒ we can write  α=2πn±((π/2)+arcsin (1/4))

$$\mathrm{arccos}\:\left(−{x}\right)\:=\pm\left(\frac{\pi}{\mathrm{2}}+\mathrm{arcsin}\:{x}\right) \\ $$ $$\mathrm{this}\:\mathrm{should}\:\mathrm{be}\:\mathrm{clear}... \\ $$ $$\mathrm{but}\:\mathrm{cos}\:\alpha\:\mathrm{has}\:\mathrm{a}\:\mathrm{period}\:\mathrm{of}\:\mathrm{2}\pi \\ $$ $$\mathrm{cos}\:\alpha\:=−\frac{\mathrm{1}}{\mathrm{4}} \\ $$ $$\mathrm{cos}\:\left(\alpha+\mathrm{2}\pi{n}\right)\:=−\frac{\mathrm{1}}{\mathrm{4}};\:{n}\in\mathbb{Z} \\ $$ $$\alpha+\mathrm{2}\pi{n}=\mathrm{arccos}\:\left(−\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$ $$\alpha+\mathrm{2}\pi{n}=\pm\left(\frac{\pi}{\mathrm{2}}+\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$ $$\alpha=−\mathrm{2}\pi{n}\pm\left(\frac{\pi}{\mathrm{2}}+\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}}\right)\:\mathrm{but}\:{n}\in\mathbb{Z}\:\Rightarrow \\ $$ $$\Rightarrow\:\mathrm{we}\:\mathrm{can}\:\mathrm{write} \\ $$ $$\alpha=\mathrm{2}\pi{n}\pm\left(\frac{\pi}{\mathrm{2}}+\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$

Commented bykelly33 last updated on 19/Mar/19

thank sr

$${thank}\:{sr} \\ $$

Commented bykelly33 last updated on 19/Mar/19

Sorry, you can explain how it′s here...  5π<α<((13π)/2) ⇒ α=((11π)/2)−arcsin (1/4)  come to the final result?    And where this valued has emerged?  α=((11π)/2)−arcsin (1/4)

$${Sorry},\:{you}\:{can}\:{explain}\:{how}\:{it}'{s}\:{here}... \\ $$ $$\mathrm{5}\pi<\alpha<\frac{\mathrm{13}\pi}{\mathrm{2}}\:\Rightarrow\:\alpha=\frac{\mathrm{11}\pi}{\mathrm{2}}−\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$ $${come}\:{to}\:{the}\:{final}\:{result}? \\ $$ $$ \\ $$ $${And}\:{where}\:{this}\:{valued}\:{has}\:{emerged}? \\ $$ $$\alpha=\frac{\mathrm{11}\pi}{\mathrm{2}}−\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Commented bykelly33 last updated on 19/Mar/19

Sorry, you can explain how it′s here...  5π<α<((13π)/2) ⇒ α=((11π)/2)−arcsin (1/4)  come to the final result?    And where this valued has emerged?  α=((11π)/2)−arcsin (1/4)

$${Sorry},\:{you}\:{can}\:{explain}\:{how}\:{it}'{s}\:{here}... \\ $$ $$\mathrm{5}\pi<\alpha<\frac{\mathrm{13}\pi}{\mathrm{2}}\:\Rightarrow\:\alpha=\frac{\mathrm{11}\pi}{\mathrm{2}}−\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$ $${come}\:{to}\:{the}\:{final}\:{result}? \\ $$ $$ \\ $$ $${And}\:{where}\:{this}\:{valued}\:{has}\:{emerged}? \\ $$ $$\alpha=\frac{\mathrm{11}\pi}{\mathrm{2}}−\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Commented byMJS last updated on 19/Mar/19

general result:  α=2πn±((π/2)+arcsin (1/4))  now we must test which n∈Z makes α fit  into the interval.  α_n ^− =2πn−((π/2)+arcsin (1/4))  α_n ^+ =2πn+((π/2)+arcsin (1/4))  ]5π;((13)/2)π[ ≈ ]15.708; 20.420[  α_3 ^− ≈17.026 is the only one to fit  ⇒ α=6π−((π/2)+arcsin (1/4))=((11π)/2)−arcsin (1/4)  sin 2α =sin (11π−2arcsin (1/4)) =       [because of period 2π: sin (11π−θ) =sin θ]  =sin (2arcsin (1/4)) =       [sin 2θ =2sin θ cos θ]  =2(sin arcsin (1/4))(cos arcsin (1/4))=  =2×(1/4)×cos arcsin (1/4) =       [cos arcsin t =sin arcsin t =(√(1−t^2 ))]  =(1/2)(√(1−(1/(16))))=((√(15))/8)

$$\mathrm{general}\:\mathrm{result}: \\ $$ $$\alpha=\mathrm{2}\pi{n}\pm\left(\frac{\pi}{\mathrm{2}}+\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$ $$\mathrm{now}\:\mathrm{we}\:\mathrm{must}\:\mathrm{test}\:\mathrm{which}\:{n}\in\mathbb{Z}\:\mathrm{makes}\:\alpha\:\mathrm{fit} \\ $$ $$\mathrm{into}\:\mathrm{the}\:\mathrm{interval}. \\ $$ $$\alpha_{{n}} ^{−} =\mathrm{2}\pi{n}−\left(\frac{\pi}{\mathrm{2}}+\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$ $$\alpha_{{n}} ^{+} =\mathrm{2}\pi{n}+\left(\frac{\pi}{\mathrm{2}}+\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$ $$\left.\right]\mathrm{5}\pi;\frac{\mathrm{13}}{\mathrm{2}}\pi\left[\:\approx\:\right]\mathrm{15}.\mathrm{708};\:\mathrm{20}.\mathrm{420}\left[\right. \\ $$ $$\alpha_{\mathrm{3}} ^{−} \approx\mathrm{17}.\mathrm{026}\:\mathrm{is}\:\mathrm{the}\:\mathrm{only}\:\mathrm{one}\:\mathrm{to}\:\mathrm{fit} \\ $$ $$\Rightarrow\:\alpha=\mathrm{6}\pi−\left(\frac{\pi}{\mathrm{2}}+\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}}\right)=\frac{\mathrm{11}\pi}{\mathrm{2}}−\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$ $$\mathrm{sin}\:\mathrm{2}\alpha\:=\mathrm{sin}\:\left(\mathrm{11}\pi−\mathrm{2arcsin}\:\frac{\mathrm{1}}{\mathrm{4}}\right)\:= \\ $$ $$\:\:\:\:\:\left[\mathrm{because}\:\mathrm{of}\:\mathrm{period}\:\mathrm{2}\pi:\:\mathrm{sin}\:\left(\mathrm{11}\pi−\theta\right)\:=\mathrm{sin}\:\theta\right] \\ $$ $$=\mathrm{sin}\:\left(\mathrm{2arcsin}\:\frac{\mathrm{1}}{\mathrm{4}}\right)\:= \\ $$ $$\:\:\:\:\:\left[\mathrm{sin}\:\mathrm{2}\theta\:=\mathrm{2sin}\:\theta\:\mathrm{cos}\:\theta\right] \\ $$ $$=\mathrm{2}\left(\mathrm{sin}\:\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}}\right)\left(\mathrm{cos}\:\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}}\right)= \\ $$ $$=\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}}×\mathrm{cos}\:\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{4}}\:= \\ $$ $$\:\:\:\:\:\left[\mathrm{cos}\:\mathrm{arcsin}\:{t}\:=\mathrm{sin}\:\mathrm{arcsin}\:{t}\:=\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }\right] \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{16}}}=\frac{\sqrt{\mathrm{15}}}{\mathrm{8}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com