Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 56525 by Sr@2004 last updated on 18/Mar/19

Commented by Sr@2004 last updated on 18/Mar/19

please solve 13 and 15

pleasesolve13and15

Commented by Sr@2004 last updated on 18/Mar/19

sorry 13 and 14

sorry13and14

Answered by MJS last updated on 18/Mar/19

13  (1)  ((xcos θ)/a)+((ysin θ)/b)=1 ⇒ x=((a(b−ysin θ))/(bcos θ))  (2)  ((ax)/(cos θ))−((by)/(sin θ))=a^2 −b^2  ⇒ x=((by+(a^2 −b^2 )sin θ)/(atan θ))  ((a(b−ysin θ))/(bcos θ))=((by+(a^2 −b^2 )sin θ)/(atan θ))  (a^2 sin^2  θ +b^2 cos^2  θ)y−a^2 bsin^3  θ −b^3 sin θ cos^2  θ =0  (a^2 sin^2  θ +b^2 cos^2  θ)(y−bsin θ)=0  ⇒ y=bsin θ ⇒ x=acos θ ⇒  ⇒ sin θ =(y/b) ∧ cos θ =(x/a)  insert:  ⇒ (1)  (x^2 /a^2 )+(y^2 /b^2 )=1 ∧ (2) true

13(1)xcosθa+ysinθb=1x=a(bysinθ)bcosθ(2)axcosθbysinθ=a2b2x=by+(a2b2)sinθatanθa(bysinθ)bcosθ=by+(a2b2)sinθatanθ(a2sin2θ+b2cos2θ)ya2bsin3θb3sinθcos2θ=0(a2sin2θ+b2cos2θ)(ybsinθ)=0y=bsinθx=acosθsinθ=ybcosθ=xainsert:(1)x2a2+y2b2=1(2)true

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Mar/19

13)((xcosθ)/a)+((ysinθ)/b)=1  xp+yq=1 ×(1/q)                 [p=((cosθ)/a)    q=((sinθ)/b)]  (x/p)−(y/q)=a^2 −b^2      ×q  ((xp)/q)+y=(1/q)  ((xq)/p)−y=q(a^2 −b^2 )  x(((p^2 +q^2 )/(pq)))=q(a^2 −b^2 )+(1/q)  x=((q^2 (a^2 −b^2 )+1)/q)×((pq)/((p^2 +q^2 )))  x=((cosθ)/a)×(1/((((cosθ)/a))^2 +(((sinθ)/b))^2 ))×[(((sinθ)/b))^2 (a^2 −b^2 )+1]  x=((cosθ)/a)×((a^2 b^2 )/(b^2 cos^2 θ+a^2 sin^2 θ))×[((b^2 +a^2 sin^2 θ−b^2 sin^2 θ)/b^2 )]  (x/a)=cosθ×(1/(b^2 cos^2 θ+a^2 sin^2 θ))×[a^2 sin^2 θ+b^2 cos^2 θ]  (x/a)=cosθ  ((xcosθ)/a)+((ysinθ)/b)=1  ((ysinθ)/b)=1−cos^2 θ  (y/b)=sinθ  ((x/a))^2 +((y/b))^2   cos^2 θ+sin^2 θ  =1 proved

13)xcosθa+ysinθb=1xp+yq=1×1q[p=cosθaq=sinθb]xpyq=a2b2×qxpq+y=1qxqpy=q(a2b2)x(p2+q2pq)=q(a2b2)+1qx=q2(a2b2)+1q×pq(p2+q2)x=cosθa×1(cosθa)2+(sinθb)2×[(sinθb)2(a2b2)+1]x=cosθa×a2b2b2cos2θ+a2sin2θ×[b2+a2sin2θb2sin2θb2]xa=cosθ×1b2cos2θ+a2sin2θ×[a2sin2θ+b2cos2θ]xa=cosθxcosθa+ysinθb=1ysinθb=1cos2θyb=sinθ(xa)2+(yb)2cos2θ+sin2θ=1proved

Commented by Sr@2004 last updated on 18/Mar/19

I cannot understand it.

Icannotunderstandit.

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Mar/19

14)secθ=((1+sinαsinβ)/(cosαcosβ))  tan^2 θ=(((1+sinαsinβ)/(cosαcosβ)))^2 −1  =((1+2sinαsinβ+sin^2 αsin^2 β−cos^2 αcos^2 β)/(cos^2 αcos^2 β))  let sinα=a   cosα=b  sinβ=c    cosβ=d  RHS  =((1+2ac+a^2 c^2 −b^2 d^2 )/(b^2 d^2 ))  =((1+2ac+a^2 c^2 −(1−a^2 )(1−c^2 ))/(b^2 d^2 ))  =((1+2ac+a^2 c^2 −1+c^2 +a^2 −a^2 c^2 )/(b^2 d^2 ))  =(((a+c)/(bd)))^2   tanθ=±(((a+c)/(bd)))  =±(((sinα)/(cosαcosβ))+((sinβ)/(cosαcosβ)))  =±(tanαsecβ+tanβsecα)proved

14)secθ=1+sinαsinβcosαcosβtan2θ=(1+sinαsinβcosαcosβ)21=1+2sinαsinβ+sin2αsin2βcos2αcos2βcos2αcos2βletsinα=acosα=bsinβ=ccosβ=dRHS=1+2ac+a2c2b2d2b2d2=1+2ac+a2c2(1a2)(1c2)b2d2=1+2ac+a2c21+c2+a2a2c2b2d2=(a+cbd)2tanθ=±(a+cbd)=±(sinαcosαcosβ+sinβcosαcosβ)=±(tanαsecβ+tanβsecα)proved

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Mar/19

13)let ((xcosθ)/a)+((ysinθ)/b)=1  bxcosθ+aysinθ=ab  x(bcosθ)+y(asinθ)=ab....(1)  ((ax)/(cosθ))−((by)/(sinθ))=a^2 −b^2   x(asinθ)+y(−bcosθ)=(a^2 −b^2 )sinθcosθ.×asinθ  x(bcosθ)+y(asinθ)=ab×bcosθ    x(a^2 sin^2 θ+b^2 cos^2 θ)=a(a^2 −b^2 )sin^2 θcosθ+ab^2 cosθ  x(a^2 sin^2 θ+b^2 cos^2 θ)=acosθ[a^2 sin^2 θ−b^2 sin^2 θ+b^2 ]  x(a^2 sin^2 θ+b^2 cos^2 θ)=acosθ[a^2 sin^2 θ+b^2 cos^2 θ]  x=acosθ  ((xcosθ)/a)+((ysinθ)/b)=1  cos^2 θ+((ysinθ)/b)=sin^2 θ+cos^2 θ  ((ysinθ)/b)=sin^2 θ  y=bsinθ  so  ((x/a))^2 +((y/b))^2   cos^2 θ+sin^2 θ=1 proved  (/)

13)letxcosθa+ysinθb=1bxcosθ+aysinθ=abx(bcosθ)+y(asinθ)=ab....(1)axcosθbysinθ=a2b2x(asinθ)+y(bcosθ)=(a2b2)sinθcosθ.×asinθx(bcosθ)+y(asinθ)=ab×bcosθx(a2sin2θ+b2cos2θ)=a(a2b2)sin2θcosθ+ab2cosθx(a2sin2θ+b2cos2θ)=acosθ[a2sin2θb2sin2θ+b2]x(a2sin2θ+b2cos2θ)=acosθ[a2sin2θ+b2cos2θ]x=acosθxcosθa+ysinθb=1cos2θ+ysinθb=sin2θ+cos2θysinθb=sin2θy=bsinθso(xa)2+(yb)2cos2θ+sin2θ=1proved

Terms of Service

Privacy Policy

Contact: info@tinkutara.com