Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 56580 by subhankar10 last updated on 18/Mar/19

(D^3 −2D^2 +9D−18)y=6cos3x

(D32D2+9D18)y=6cos3x

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Mar/19

let y=e^(mx)  be a solution  Dy=me^(mx)   D^2 y=m^2 e^(mx)   ..  so  complimentary function    m^3 e^(mx) −2m^2 e^(mx) +9me^(mx) −18e^(mx) =0  e^(mx) (m^3 −2m^2 +9m−18)=0  e^(mx) ≠0  m^3 −2m^2 +9m−18=0  m^2 (n−2)+9(m−2)=0  (m−2)(m^2 +9)=0  m=2 and  ±3i  C.F  C_1 e^(2x) +C_2 e^(i3x) +C_3 e^(−i3x)   Particular intregal  y=((6cos3x)/(D^3 −2D^2 +9D−18))  =6×((cos3x)/(D^2 (D−2)+9(D−2)))  =6×((cos3x)/((D−2)(D^2 +9)))  =6×(((D+2) cos3x)/((D^2 −4)(D^2 +9)))  =(6/((−3^2 −4)))×((−3sin3x+2cos3x)/(D^2 +9))  =((−6)/(13))×((−3sin3x+2cos3x)/(D^2 +9))  =(6/(13))×(((3sin3x−2cos3x))/(D^2 +9))  =(6/(13))×((rsin(3x−θ))/(D^2 +9)) [r=(√(3^2 +2^2 )) =(√(13))   tanθ=(2/3)]  p=(6/((√(13)) ))×((cos(3x−θ))/(D^2 +9))  q=(6/(√(13)))×((sin(3x−θ))/(D^2 +9))  p+iq=(6/(√(13)))×(e^(i(3x−θ)) /(D^2 +9))  p+iq=(6/(√(13)))×e^(−iθ) ×(e^(i×3x) /(D^2 +9))  p+iq=(6/(√(13)))×e^(−iθ) ×(e^(i3x) /((D+i3)(D−i3)))  p+iq=(6/(√(13)))×(cosθ−isinθ)×(e^(i3x) /((i3+i3)(D+i3−i3)))×1  =(6/(√(13)))×((3/(√(13)))−i×(2/(√(13))))×(((cos3x+isin3x))/(6i))×x  =(1/(13))×((3i+2)/i^2 )×(xcos3x+ixsin3x)  =((−1)/(13))(i3xcos3x−3xsin3x+2xcos3x+i2xsin3x)  =((−1)/(13)){(2xcos3x−3xsin3x)+i(3xcos3x+2xsin3x)}  =((−x)/(13))(2cos3x−3sin3x)+((−ix)/(13))(3cos3x+2sin3x)  now our answer is related to complex part  so answer is  Particular intregal is  =((−x)/(13))(3cos3x+2sin3x)  so complte answer is=C.F+P.I  y=C_1 e^(2x) +C_2 e^(i3x) +C_3 e^(−i3x) +((−x)/(13))(3cos3x+2sin3x)

lety=emxbeasolutionDy=memxD2y=m2emx..socomplimentaryfunctionm3emx2m2emx+9memx18emx=0emx(m32m2+9m18)=0emx0m32m2+9m18=0m2(n2)+9(m2)=0(m2)(m2+9)=0m=2and±3iC.FC1e2x+C2ei3x+C3ei3xParticularintregaly=6cos3xD32D2+9D18=6×cos3xD2(D2)+9(D2)=6×cos3x(D2)(D2+9)=6×(D+2)cos3x(D24)(D2+9)=6(324)×3sin3x+2cos3xD2+9=613×3sin3x+2cos3xD2+9=613×(3sin3x2cos3x)D2+9=613×rsin(3xθ)D2+9[r=32+22=13tanθ=23]p=613×cos(3xθ)D2+9q=613×sin(3xθ)D2+9p+iq=613×ei(3xθ)D2+9p+iq=613×eiθ×ei×3xD2+9p+iq=613×eiθ×ei3x(D+i3)(Di3)p+iq=613×(cosθisinθ)×ei3x(i3+i3)(D+i3i3)×1=613×(313i×213)×(cos3x+isin3x)6i×x=113×3i+2i2×(xcos3x+ixsin3x)=113(i3xcos3x3xsin3x+2xcos3x+i2xsin3x)=113{(2xcos3x3xsin3x)+i(3xcos3x+2xsin3x)}=x13(2cos3x3sin3x)+ix13(3cos3x+2sin3x)nowouranswerisrelatedtocomplexpartsoanswerisParticularintregalis=x13(3cos3x+2sin3x)socomplteansweris=C.F+P.Iy=C1e2x+C2ei3x+C3ei3x+x13(3cos3x+2sin3x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com