Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 56583 by maxmathsup by imad last updated on 18/Mar/19

let f(x) =((cosx)/(x^2  +1))  1) calculate f^((n)) (x)  then f^((n)) (0)  2)calculste f^((n)) (0)  3) developp f at integr serie .

letf(x)=cosxx2+11)calculatef(n)(x)thenf(n)(0)2)calculstef(n)(0)3)developpfatintegrserie.

Commented by maxmathsup by imad last updated on 20/Mar/19

1) we have f(x) =((cosx)/((x−i)(x+i))) =(1/(2i)){((cosx)/(x−i)) −((cosx)/(x+i))} ⇒  f^((n)) (x)=(1/(2i)){  (((cosx)/(x−i)))^((n)) −(((cosx)/(x+i)))^((n)) } leibniz formula give  (((cosx)/(x+i)))^((n))  =Σ_(k=0) ^n  C_n ^k   ((1/(x+i)))^((k)) (cosx)^((n−k))  =Σ_(k=0) ^n  C_n ^k  (((−1)^k k!)/((x+i)^(k+1) )) cos(x +(n−k)(π/2))  also for the same raison  (((cosx)/(x−i)))^((n))   =Σ_(k=0) ^n  C_n ^k   (((−1)^k k!)/((x−i)^(k+1) )) cos(x+(n−k)(π/2))  ⇒f^((n)) (x) =(1/(2i)) Σ_(k=0) ^n   C_n ^k  (−1)^k k!cos(x+(n−k)(π/2)){(1/((x−i)^(k+1) )) −(1/((x+i)^(k+1) ))}  f^((n)) (x)=(1/(2i)) Σ_(k=0) ^n  C_n ^k (−1)^k k! cos(x+(n−k)(π/2))(((x+i)^(k+1) −(x−i)^(k+1) )/((x^2 +1)^(k+1) ))  2)x=0 ⇒f^((n)) (0) =(1/(2i)) Σ_(k=0) ^n  C_n ^k (−1)^k k! cos((n−k)(π/2)) ((2i Im(i^(k+1) ))/1) ⇒  f^((n)) (0) =Σ_(k=0) ^n  C_n ^k (−1)^k k! cos((n−k)(π/2))sin((k+1)(π/2)) .  3) f(x) =Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n   =Σ_(n=0) ^∞   (1/(n!)){Σ_(k=0) ^n  ((n!)/(k!(n−k)!))(−1)^k k! cos((n−k)(π/2))sin((k+1)(π/2)}x^n  ⇒  f(x) =Σ_(n=0) ^∞   {Σ_(k=0) ^n  (((−1)^k )/((n−k)!)) cos((n−k)(π/2))sin((k+1)(π/2))}x^n  .

1)wehavef(x)=cosx(xi)(x+i)=12i{cosxxicosxx+i}f(n)(x)=12i{(cosxxi)(n)(cosxx+i)(n)}leibnizformulagive(cosxx+i)(n)=k=0nCnk(1x+i)(k)(cosx)(nk)=k=0nCnk(1)kk!(x+i)k+1cos(x+(nk)π2)alsoforthesameraison(cosxxi)(n)=k=0nCnk(1)kk!(xi)k+1cos(x+(nk)π2)f(n)(x)=12ik=0nCnk(1)kk!cos(x+(nk)π2){1(xi)k+11(x+i)k+1}f(n)(x)=12ik=0nCnk(1)kk!cos(x+(nk)π2)(x+i)k+1(xi)k+1(x2+1)k+12)x=0f(n)(0)=12ik=0nCnk(1)kk!cos((nk)π2)2iIm(ik+1)1f(n)(0)=k=0nCnk(1)kk!cos((nk)π2)sin((k+1)π2).3)f(x)=n=0f(n)(0)n!xn=n=01n!{k=0nn!k!(nk)!(1)kk!cos((nk)π2)sin((k+1)π2}xnf(x)=n=0{k=0n(1)k(nk)!cos((nk)π2)sin((k+1)π2)}xn.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com