Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 56602 by Tawa1 last updated on 19/Mar/19

Sum the series:                            sin^2 (α) + sin^2 (2α) + sin^2 (3α) + ... + sin^2 (nα)

Sumtheseries:sin2(α)+sin2(2α)+sin2(3α)+...+sin2(nα)

Commented by maxmathsup by imad last updated on 26/Mar/19

let S_n =Σ_(k=1) ^n  sin^2 (kα) ⇒S_n =Σ_(k=1) ^n ((1−cos(2kα))/2)  =(n/2) −(1/2)Σ_(k=1) ^n  cos(2kα) but   Σ_(k=1) ^n  cos(2kα) =Σ_(k=0) ^n  cos(2kα)−1 =Re(Σ_(k=0) ^n  e^(i2kα) )−1  Σ_(k=0) ^n  e^(i2kα)   =Σ_(k=0) ^n  (e^(i2α) )^k  =((1−e^(i2(n+1)α) )/(1−e^(i2α) ))  (if  e^(i2α) ≠1)  =((1−cos2(n+1)α−isin2(n+1)α)/(1−cos(2α)−isin(2α))) = ((2sin^2 (n+1)α −2isin((n+1)α) cos((n+1)α))/(2sin^2 α −2i sinα cosα))  =((−i sin(n+1)α{cos(n+1)α +i sin(n+1)α)/(−isinα{ cosα +isinα})) =((sin(n+1)α)/(sinα)) e^(i(n+1)α)  e^(−iα)   =((sin(n+1)α)/(sinα)) e^(inα)  =((sin(n+1)α)/(sinα)){cos(nα)+isin(nα)} ⇒  Σ_(k=1) ^n  cos(2kα) =((sin(n+1)α cos(nα))/(sinα)) −1 ⇒  S_n =(n/2) −(1/2)( ((sin(n+1)α cos(nα))/(sinα)) −1) =((n+1)/2) −((sin(n+1)α cos(nα))/(2sinα))  if e^(i2α)  ≠1 .

letSn=k=1nsin2(kα)Sn=k=1n1cos(2kα)2=n212k=1ncos(2kα)butk=1ncos(2kα)=k=0ncos(2kα)1=Re(k=0nei2kα)1k=0nei2kα=k=0n(ei2α)k=1ei2(n+1)α1ei2α(ifei2α1)=1cos2(n+1)αisin2(n+1)α1cos(2α)isin(2α)=2sin2(n+1)α2isin((n+1)α)cos((n+1)α)2sin2α2isinαcosα=isin(n+1)α{cos(n+1)α+isin(n+1)αisinα{cosα+isinα}=sin(n+1)αsinαei(n+1)αeiα=sin(n+1)αsinαeinα=sin(n+1)αsinα{cos(nα)+isin(nα)}k=1ncos(2kα)=sin(n+1)αcos(nα)sinα1Sn=n212(sin(n+1)αcos(nα)sinα1)=n+12sin(n+1)αcos(nα)2sinαifei2α1.

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Mar/19

T_n =sin^2 (nα)  T_n =((1−cos2nα)/2)  =(1/2)−(1/2)(cos2nα)  T_1 =(1/2)−(1/2)(cos2α)  T_2 =(1/2)−(1/2)(cos4α)  T_3 =(1/2)−(1/2)(cos6α)  ...  ...  T_n =(1/2)−(1/2)(cos2nα)  S=n×(1/2)−(1/2)(cos2α+cos4α+cos6α+...+cos2nα)  S=(n/2)−(p/2)  p=cos2α+cos4α+cos6α+...+cos2nα  2cos2αsinα=sin3α−sinα  2cos4αsinα=sin5α−sin3α  2cos6αsinα=sin7α−sin5α  ...  ...  2cos2nαsinα=sin(2n+1)α−sin(2n−1)α  add them  2sinα(cos2α+cos4α+..+cos2nα)=sin(2n+1)α−sinα  2sinα×p=sin(2n+1)α−sinα  p=((sin(2n+1)α−sinα)/(2sinα))  So S=(n/2)−(p/2)  =(n/2)−((sin(2n+1)α−sinα)/(4sinα))  pls check...

Tn=sin2(nα)Tn=1cos2nα2=1212(cos2nα)T1=1212(cos2α)T2=1212(cos4α)T3=1212(cos6α)......Tn=1212(cos2nα)S=n×1212(cos2α+cos4α+cos6α+...+cos2nα)S=n2p2p=cos2α+cos4α+cos6α+...+cos2nα2cos2αsinα=sin3αsinα2cos4αsinα=sin5αsin3α2cos6αsinα=sin7αsin5α......2cos2nαsinα=sin(2n+1)αsin(2n1)αaddthem2sinα(cos2α+cos4α+..+cos2nα)=sin(2n+1)αsinα2sinα×p=sin(2n+1)αsinαp=sin(2n+1)αsinα2sinαSoS=n2p2=n2sin(2n+1)αsinα4sinαplscheck...

Commented by maxmathsup by imad last updated on 19/Mar/19

be careful α here is in radian not in degre...

becarefulαhereisinradiannotindegre...

Commented by Tawa1 last updated on 19/Mar/19

Thanks sir.

Thankssir.

Commented by Tawa1 last updated on 19/Mar/19

Then it will be stated that where  α is in degree, can it ?

Thenitwillbestatedthatwhereαisindegree,canit?

Commented by Tawa1 last updated on 19/Mar/19

I used this question   sin^2 (1) + sin^2 (2) + sin^2 (3) + ... + sin^2 (89) + sin^2 (90)  to form the question above sir ....

Iusedthisquestionsin2(1)+sin2(2)+sin2(3)+...+sin2(89)+sin2(90)toformthequestionabovesir....

Commented by Tawa1 last updated on 19/Mar/19

Correct sir.     sin^2 (α) + sin^2 (2α) + sin^2 (3α) + ... + sin^2 (nα)  =  (n/2) − ((sin(2n + 1)α − sin(α))/(4sin(α)))  where  α  =  1   sin^2 (1) + sin^2 (2) + sin^2 (3) + ... + sin^2 (89) + sin^2 (90)                                                                                               =  ((90)/2) − ((sin[2(90) + 1] − sin(1))/(4 sin(1)))   sin^2 (1) + sin^2 (2) + sin^2 (3) + ... + sin^2 (89) + sin^2 (90)                                                                                               =  ((90)/2) − ((sin(180) − sin(1))/(4 sin(1)))   sin^2 (1) + sin^2 (2) + sin^2 (3) + ... + sin^2 (89) + sin^2 (90)  =  ((90)/2) − (− (1/2))   sin^2 (1) + sin^2 (2) + sin^2 (3) + ... + sin^2 (89) + sin^2 (90)  =  45 + 0.5   sin^2 (1) + sin^2 (2) + sin^2 (3) + ... + sin^2 (89) + sin^2 (90)  =  45.5    Same as what you got earlier and sir  mrW.

Correctsir.sin2(α)+sin2(2α)+sin2(3α)+...+sin2(nα)=n2sin(2n+1)αsin(α)4sin(α)whereα=1sin2(1)+sin2(2)+sin2(3)+...+sin2(89)+sin2(90)=902sin[2(90)+1]sin(1)4sin(1)sin2(1)+sin2(2)+sin2(3)+...+sin2(89)+sin2(90)=902sin(180)sin(1)4sin(1)sin2(1)+sin2(2)+sin2(3)+...+sin2(89)+sin2(90)=902(12)sin2(1)+sin2(2)+sin2(3)+...+sin2(89)+sin2(90)=45+0.5sin2(1)+sin2(2)+sin2(3)+...+sin2(89)+sin2(90)=45.5SameaswhatyougotearlierandsirmrW.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com