Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 56629 by maxmathsup by imad last updated on 19/Mar/19

1) calculate I =∫_(−∞) ^(+∞)   (dx/(x^2 −i))   and J =∫_(−∞) ^(+∞)   (dx/(x^2 −i))  2) find the value of ∫_(−∞) ^(+∞)   (dx/(x^4  +1))

1)calculateI=+dxx2iandJ=+dxx2i2)findthevalueof+dxx4+1

Commented by maxmathsup by imad last updated on 19/Mar/19

 J =∫_(−∞) ^(+∞)   (dx/(x^2  +i))

J=+dxx2+i

Commented by maxmathsup by imad last updated on 20/Mar/19

1) let ϕ(z)=(1/(z^2 −i)) ⇒ ϕ(z)= (1/((z−(√i))(z+(√i)))) =(1/((z−e^((iπ)/4) )(z+e^((iπ)/4) ))) so the poles of  ϕ are +^− e^((iπ)/4)   residus theorem give ∫_(−∞) ^(+∞) ϕ(z)dz=2iπRes(ϕ,e^((iπ)/4) )  Res(ϕ, e^((iπ)/4) )=lim_(z→e^((iπ)/4) )    (z−e^((iπ)/4) )ϕ(z)=(1/(2 e^((iπ)/4) )) =(1/2) e^(−((iπ)/4))  ⇒ ∫_(−∞) ^(+∞) ϕ(z)dz=2iπ(1/2) e^(−((iπ)/4))   =iπ e^(−((iπ)/4))  ⇒ I =iπ e^(−((iπ)/4))     let calculate J =∫_(−∞) ^(+∞)  (dx/(x^2  +i))  let W(z)=(1/(z^2  +i)) ⇒W(z)=(1/((z−e^(−((iπ)/4)) )(z +e^(−((iπ)/4)) )))  so the poles of ϕ are +^− e^(−((iπ)/4))   residus theorem give ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,−e^(−((iπ)/4)) )  Res(W,−e^(−((iπ)/4)) ) =lim_(z→−e^(−((iπ)/4)) )    (z+e^(−((iπ)/4)) )W(z) =(1/(−2 e^(−((iπ)/4)) )) =−(1/2) e^((iπ)/4)  ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ (−(1/2) e^((iπ)/4) ) =−iπ e^((iπ)/4)    =J   also we can use that  J =conj(I) =conj(iπ e^(−((iπ)/4)) )=−iπ e^((iπ)/4)    2)  ∫_(−∞) ^(+∞)   (dx/(x^4  +1)) =∫_(−∞) ^(+∞)   (dx/((x^2 −i)(x^2  +i))) =(1/(2i))∫_(−∞) ^(+∞) {(1/(x^2 −i)) −(1/(x^2  +i))}dx  =(1/(2i)){ I−J} =(1/(2i)){iπ e^(−((iπ)/4))  +i π e^((iπ)/4) } =(π/2) (2cos((π/4)))=π (1/(√2)) =(π/(√2)) .

1)letφ(z)=1z2iφ(z)=1(zi)(z+i)=1(zeiπ4)(z+eiπ4)sothepolesofφare+eiπ4residustheoremgive+φ(z)dz=2iπRes(φ,eiπ4)Res(φ,eiπ4)=limzeiπ4(zeiπ4)φ(z)=12eiπ4=12eiπ4+φ(z)dz=2iπ12eiπ4=iπeiπ4I=iπeiπ4letcalculateJ=+dxx2+iletW(z)=1z2+iW(z)=1(zeiπ4)(z+eiπ4)sothepolesofφare+eiπ4residustheoremgive+W(z)dz=2iπRes(W,eiπ4)Res(W,eiπ4)=limzeiπ4(z+eiπ4)W(z)=12eiπ4=12eiπ4+W(z)dz=2iπ(12eiπ4)=iπeiπ4=JalsowecanusethatJ=conj(I)=conj(iπeiπ4)=iπeiπ42)+dxx4+1=+dx(x2i)(x2+i)=12i+{1x2i1x2+i}dx=12i{IJ}=12i{iπeiπ4+iπeiπ4}=π2(2cos(π4))=π12=π2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com