All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 56629 by maxmathsup by imad last updated on 19/Mar/19
1)calculateI=∫−∞+∞dxx2−iandJ=∫−∞+∞dxx2−i2)findthevalueof∫−∞+∞dxx4+1
Commented by maxmathsup by imad last updated on 19/Mar/19
J=∫−∞+∞dxx2+i
Commented by maxmathsup by imad last updated on 20/Mar/19
1)letφ(z)=1z2−i⇒φ(z)=1(z−i)(z+i)=1(z−eiπ4)(z+eiπ4)sothepolesofφare+−eiπ4residustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,eiπ4)Res(φ,eiπ4)=limz→eiπ4(z−eiπ4)φ(z)=12eiπ4=12e−iπ4⇒∫−∞+∞φ(z)dz=2iπ12e−iπ4=iπe−iπ4⇒I=iπe−iπ4letcalculateJ=∫−∞+∞dxx2+iletW(z)=1z2+i⇒W(z)=1(z−e−iπ4)(z+e−iπ4)sothepolesofφare+−e−iπ4residustheoremgive∫−∞+∞W(z)dz=2iπRes(W,−e−iπ4)Res(W,−e−iπ4)=limz→−e−iπ4(z+e−iπ4)W(z)=1−2e−iπ4=−12eiπ4⇒∫−∞+∞W(z)dz=2iπ(−12eiπ4)=−iπeiπ4=JalsowecanusethatJ=conj(I)=conj(iπe−iπ4)=−iπeiπ42)∫−∞+∞dxx4+1=∫−∞+∞dx(x2−i)(x2+i)=12i∫−∞+∞{1x2−i−1x2+i}dx=12i{I−J}=12i{iπe−iπ4+iπeiπ4}=π2(2cos(π4))=π12=π2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com