Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 56641 by ajfour last updated on 20/Mar/19

x^5 +ax^4 +cx^2 +dx+e=0  let x=((rt+s)/(t+p))  . Find r,s,p such  that equation gets transformed  to     λt^5 +Dt+E=0.

x5+ax4+cx2+dx+e=0letx=rt+st+p.Findr,s,psuchthatequationgetstransformedtoλt5+Dt+E=0.

Commented by ajfour last updated on 20/Mar/19

Granted this is done, we need to  see if the quintic can perhaps now  be solved..  let     x^5 +kx+q=0  equivalently    (x^2 +fx+g)(x^3 +hx^2 +mx+n)=0  ⇒  x^5 +(h+f)x^4 +(m+fh+g)x^3 +    (n+fm+gh)x^2 +(fn+gm)x+gn=0  ⇒             h+f=0         m+fh+g=0         n+fm+gh=0     ...(i)         fn+gm=k            ....(ii)         gn=q     from (i)     [ (q/g)−h(h^2 −g)+gh=0   ]×h  & from (ii)      −((hq)/g)+g(h^2 −g)=k  Adding      3gh^2 +g^2 −h^4 =k   ]×g      ...(I)     &       gh^3 −2g^2 h = q      ]×h  Adding       g^2 h^2 +g^3 = gk+hq              ...(II)  from (I)      h^2  = ((3g±(√(9g^2 −4(k−g^2 ))))/2)  ⇒    h^2  = ((3g)/2)±((√(13g^2 −4k))/2)  while from (II)          h= ((q±(√(q^2 −4g^3 (g^2 −k))))/(2g^2 ))  ⇒ ((3g)/2)±((√(13g^2 −4k))/2) = [((q±(√(q^2 −4g^3 (g^2 −k))))/(2g^2 ))]^2        +× ?%%/ Degree 5 is degree 5//

Grantedthisisdone,weneedtoseeifthequinticcanperhapsnowbesolved..letx5+kx+q=0equivalently(x2+fx+g)(x3+hx2+mx+n)=0x5+(h+f)x4+(m+fh+g)x3+(n+fm+gh)x2+(fn+gm)x+gn=0h+f=0m+fh+g=0n+fm+gh=0...(i)fn+gm=k....(ii)gn=qfrom(i)[qgh(h2g)+gh=0]×h&from(ii)hqg+g(h2g)=kAdding3gh2+g2h4=k]×g...(I)&gh32g2h=q]×hAddingg2h2+g3=gk+hq...(II)from(I)h2=3g±9g24(kg2)2h2=3g2±13g24k2whilefrom(II)h=q±q24g3(g2k)2g23g2±13g24k2=[q±q24g3(g2k)2g2]2+×?%%/Degree5isdegree5//

Commented by Tawa1 last updated on 20/Mar/19

Wow,  God bless you sir.

Wow,Godblessyousir.

Answered by ajfour last updated on 20/Mar/19

(rt+s)^5 +a(rt+s)^4 (t+p)+c(rt+s)^2 (t+p)^3                      +d(rt+s)(t+p)^4 +(t+p)^5 =0  r^5 t^5 +5r^4 st^4 +10r^3 s^2 t^3 +10r^2 s^3 t^2 +           +5rs^4 t+s^5   +a(r^4 t^4 +4r^3 st^3 +6r^2 s^2 t^2 +4rs^3 t+s^4 )(t+p)  +c(r^2 t^2 +2rst+s^2 )(t^3 +3pt^2 +3p^2 t+p^3 )  +d(rt+s)(t^4 +4pt^3 +6p^2 t^2 +4p^3 t+p^4 )  +e(t^5 +5pt^4 +10p^2 t^3 +10p^3 t^2 +5p^4 t+p^5 )   = 0  ⇒      (r^5 +ar^4 +cr^2 +dr+e)t^5 +   (5r^4 s+apr^4 +4ar^3 s+3cpr^2 +2crs+               4dpr+ds+5ep)t^4 +    (10r^3 s^2 +4apr^3 s+6ar^2 s^2 +3cp^2 r^2      +6cprs+cs^2 +6dp^2 r+4dps+10ep^2 )t^3    (10r^2 s^3 +6apr^2 s^2 +4ars^3 +cp^3 r^2 +6cp^2 rs       +3cps^2 +4dp^3 r+6dp^2 s+10ep^3 )t^2      +Dt+E = 0  If coefficients of t^4 ,t^3 ,t^2  are to be zero;  then    5r^4 s+apr^4 +4ar^3 s+3cpr^2 +2crs+              4dpr+ds+5pe = 0  &  10r^3 s^2 +4apr^3 s+6ar^2 s^2 +3cp^2 r^2 +     6cprs+cs^2 +6dp^2 r+4dps+10ep^2 =0  &  10r^2 s^3 +6apr^2 s^2 +4ars^3 +cp^3 r^2 +6cp^2 rs   +3cps^2 +4dp^3 r+6dp^2 s+10ep^3 =0  .....

(rt+s)5+a(rt+s)4(t+p)+c(rt+s)2(t+p)3+d(rt+s)(t+p)4+(t+p)5=0r5t5+5r4st4+10r3s2t3+10r2s3t2++5rs4t+s5+a(r4t4+4r3st3+6r2s2t2+4rs3t+s4)(t+p)+c(r2t2+2rst+s2)(t3+3pt2+3p2t+p3)+d(rt+s)(t4+4pt3+6p2t2+4p3t+p4)+e(t5+5pt4+10p2t3+10p3t2+5p4t+p5)=0(r5+ar4+cr2+dr+e)t5+(5r4s+apr4+4ar3s+3cpr2+2crs+4dpr+ds+5ep)t4+(10r3s2+4apr3s+6ar2s2+3cp2r2+6cprs+cs2+6dp2r+4dps+10ep2)t3(10r2s3+6apr2s2+4ars3+cp3r2+6cp2rs+3cps2+4dp3r+6dp2s+10ep3)t2+Dt+E=0Ifcoefficientsoft4,t3,t2aretobezero;then5r4s+apr4+4ar3s+3cpr2+2crs+4dpr+ds+5pe=0&10r3s2+4apr3s+6ar2s2+3cp2r2+6cprs+cs2+6dp2r+4dps+10ep2=0&10r2s3+6apr2s2+4ars3+cp3r2+6cp2rs+3cps2+4dp3r+6dp2s+10ep3=0.....

Commented by Tawa1 last updated on 20/Mar/19

Wow, God bless you sir. Weldone

Wow,Godblessyousir.Weldone

Terms of Service

Privacy Policy

Contact: info@tinkutara.com