Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 56643 by Sr@2004 last updated on 20/Mar/19

Commented by Sr@2004 last updated on 20/Mar/19

please solve 6,7,8,9

pleasesolve6,7,8,9

Commented by malwaan last updated on 21/Mar/19

and 10 ?

and10?

Answered by tanmay.chaudhury50@gmail.com last updated on 20/Mar/19

cosecα+cotα=2+(√5)   cosec^2 α−cot^2 α=1  (cosecα+cotα)(cosecα−cotα)=1  cosecα−cotα=(1/((√5) +2))=(((√5) −2)/(((√5) +2)((√5) −2)))=(((√5) −2)/1)  cosecα+cotα=(√5) +2  cosecα−cotα=(√5) −2  2cosecα=2(√5)   sinα=(1/(√5))→cos^2 α=1−(1/5)=(4/5)  cosα=(2/(√5))

cosecα+cotα=2+5cosec2αcot2α=1(cosecα+cotα)(cosecαcotα)=1cosecαcotα=15+2=52(5+2)(52)=521cosecα+cotα=5+2cosecαcotα=522cosecα=25sinα=15cos2α=115=45cosα=25

Answered by tanmay.chaudhury50@gmail.com last updated on 20/Mar/19

((sin^4 θ)/x)+((cos^4 θ)/y)=(1/(x+y))  let a=sin^2 θ  (a^2 /x)+(((1−a)^2 )/y)=(1/(x+y))  ya^2 +x(1−2a+a^2 )=((xy)/(x+y))  a^2 (xy+y^2 )+(1−2a+a^2 )(x^2 +xy)=xy  a^2 xy+a^2 y^2 +x^2 +xy−2ax^2 −2axy+a^2 x^2 +a^2 xy=xy  a^2 (xy+y^2 +x^2 +xy)−2a(x^2 +xy)+x^2 =0  a^2 (x+y)^2 −2a(x+y)x+x^2 =0  {a(x+y)−x}^2 =0  a(x+y)=x  a=(x/(x+y))→sin^2 θ=(x/(x+y))[a=sin^2 θ]  cos^2 θ=1−sin^2 θ=1−(x/(x+y))  cos^2 θ=(y/((x+y)))  now  ((sin^(2m+2) θ)/x^m )+((cos^(2m+2) θ)/y^m )  =((((x/(x+y)))^(m+1) )/x^m )+((((y/(x+y)))^(m+1) )/y^m )  =(x/((x+y)^(m+1) ))+(y/((x+y)^(m+1) ))  =((x+y)/((x+y)^(m+1) ))  =(1/((x+y)^m )) proved

sin4θx+cos4θy=1x+yleta=sin2θa2x+(1a)2y=1x+yya2+x(12a+a2)=xyx+ya2(xy+y2)+(12a+a2)(x2+xy)=xya2xy+a2y2+x2+xy2ax22axy+a2x2+a2xy=xya2(xy+y2+x2+xy)2a(x2+xy)+x2=0a2(x+y)22a(x+y)x+x2=0{a(x+y)x}2=0a(x+y)=xa=xx+ysin2θ=xx+y[a=sin2θ]cos2θ=1sin2θ=1xx+ycos2θ=y(x+y)nowsin2m+2θxm+cos2m+2θym=(xx+y)m+1xm+(yx+y)m+1ym=x(x+y)m+1+y(x+y)m+1=x+y(x+y)m+1=1(x+y)mproved

Answered by tanmay.chaudhury50@gmail.com last updated on 20/Mar/19

tanA=ntanB  sinA=msinB  ((sinA)/(sinB))=m  ((cosecB)/(cosecA))=m  ((1+cot^2 B)/(1+cot^2 A))=m^2  [tanB=((tanA)/n)]  ((1+(n^2 /(tan^2 A)))/(1+(1/(tan^2 A))))=m^2   ((tan^2 A+n^2 )/(1+tan^2 A))=m^2   tan^2 A+n^2 =m^2 +m^2 tan^2 A  tan^2 A(1−m^2 )=m^2 −n^2   tan^2 A=((m^2 −n^2 )/(1−m^2 ))  1+tan^2 A=((m^2 −n^2 )/(1−m^2 ))+1  sec^2 A=((1−n^2 )/(1−m^2 ))  cos^2 A=((1−m^2 )/(1−n^2 ))  cos^2 A=((m^2 −2)/(n^2 −1))

tanA=ntanBsinA=msinBsinAsinB=mcosecBcosecA=m1+cot2B1+cot2A=m2[tanB=tanAn]1+n2tan2A1+1tan2A=m2tan2A+n21+tan2A=m2tan2A+n2=m2+m2tan2Atan2A(1m2)=m2n2tan2A=m2n21m21+tan2A=m2n21m2+1sec2A=1n21m2cos2A=1m21n2cos2A=m22n21

Answered by tanmay.chaudhury50@gmail.com last updated on 20/Mar/19

asinx=bcosx=((2ctanx)/(1−tan^2 x))=k(assumed)  a=(k/(sinx))   b=(k/(cosx))    c=(k/((2tanx)/(1−tan^2 x)))→(k/(tan2x))  (a/b)=((cosx)/(sinx))→((a^2 −b^2 )/(a^2 +b^2 ))=((cos^2 x−sin^2 x)/(cos^2 x+sin^2 x))=cos2x  now (((a^2 −b^2 )^2 )/(a^2 +b^2 ))  =(a^2 −b^2 )×cos2x  =((k^2 /(sin^2 x))−(k^2 /(cos^2 x)))×cos2x  =k^2 (((cos^2 x−sin^2 x)/(sin^2 xcos^2 x)))cos2x  =((4k^2 ×cos2x×cos2x)/(4sin^2 xcos^2 x))  =4k^2 ×((cos^2 2x)/((2sinxcosx)^2 ))  =4k^2 ×((cos^2 2x)/(sin^2 2x))  =((4k^2 )/(tan^2 2x))  =4c^2   [(k/(tan2x))=c]

asinx=bcosx=2ctanx1tan2x=k(assumed)a=ksinxb=kcosxc=k2tanx1tan2xktan2xab=cosxsinxa2b2a2+b2=cos2xsin2xcos2x+sin2x=cos2xnow(a2b2)2a2+b2=(a2b2)×cos2x=(k2sin2xk2cos2x)×cos2x=k2(cos2xsin2xsin2xcos2x)cos2x=4k2×cos2x×cos2x4sin2xcos2x=4k2×cos22x(2sinxcosx)2=4k2×cos22xsin22x=4k2tan22x=4c2[ktan2x=c]

Commented by Sr@2004 last updated on 22/Mar/19

sir i cannot understand

siricannotunderstand

Terms of Service

Privacy Policy

Contact: info@tinkutara.com