Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 56681 by Joel578 last updated on 21/Mar/19

Prove that  sin ∣x∣ ≤ ∣x∣ ≤ tan ∣x∣    for    ∣x∣ < (π/2)

$$\mathrm{Prove}\:\mathrm{that} \\ $$ $$\mathrm{sin}\:\mid{x}\mid\:\leqslant\:\mid{x}\mid\:\leqslant\:\mathrm{tan}\:\mid{x}\mid\:\:\:\:\mathrm{for}\:\:\:\:\mid{x}\mid\:<\:\frac{\pi}{\mathrm{2}} \\ $$

Commented byAbdo msup. last updated on 22/Mar/19

let ∣x∣=t  let prove that sint≤t≤tant for0≤t<(π/2)  let W(x)=t−sint ⇒W^, (t)=1−cost ≥0  t      0                (π/2)  W^′            +  W  0    incr    1       ⇒W(t)≥0 ⇒sint ≤t  let ϕ(t)=tant −t ⇒ϕ^′ (t)=1+tan^2 t−1 =tan^2 t ≥0 ⇒  t         0               (π/2)  ϕ^′                +  ϕ      0                 +∞     ⇒ϕ(t)≥0   ⇒t ≤tant    so the result is proved .

$${let}\:\mid{x}\mid={t}\:\:{let}\:{prove}\:{that}\:{sint}\leqslant{t}\leqslant{tant}\:{for}\mathrm{0}\leqslant{t}<\frac{\pi}{\mathrm{2}} \\ $$ $${let}\:{W}\left({x}\right)={t}−{sint}\:\Rightarrow{W}^{,} \left({t}\right)=\mathrm{1}−{cost}\:\geqslant\mathrm{0} \\ $$ $${t}\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\pi}{\mathrm{2}} \\ $$ $${W}^{'} \:\:\:\:\:\:\:\:\:\:\:+ \\ $$ $${W}\:\:\mathrm{0}\:\:\:\:{incr}\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\Rightarrow{W}\left({t}\right)\geqslant\mathrm{0}\:\Rightarrow{sint}\:\leqslant{t} \\ $$ $${let}\:\varphi\left({t}\right)={tant}\:−{t}\:\Rightarrow\varphi^{'} \left({t}\right)=\mathrm{1}+{tan}^{\mathrm{2}} {t}−\mathrm{1}\:={tan}^{\mathrm{2}} {t}\:\geqslant\mathrm{0}\:\Rightarrow \\ $$ $${t}\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\pi}{\mathrm{2}} \\ $$ $$\varphi^{'} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+ \\ $$ $$\varphi\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty\:\:\:\:\:\Rightarrow\varphi\left({t}\right)\geqslant\mathrm{0}\:\:\:\Rightarrow{t}\:\leqslant{tant}\:\: \\ $$ $${so}\:{the}\:{result}\:{is}\:{proved}\:. \\ $$

Answered by ajfour last updated on 21/Mar/19

let  ∣x∣=x     cos x ≤1 ≤1+tan^2 x    ((d(sin x))/dx)≤ ((d(x))/dx) ≤ ((d(tan x))/dx)  and at x=0 , sin x=x=tan x ;  hence    sin x ≤ x ≤ tan x .

$$\mathrm{let}\:\:\mid\mathrm{x}\mid=\mathrm{x} \\ $$ $$\:\:\:\mathrm{cos}\:\mathrm{x}\:\leqslant\mathrm{1}\:\leqslant\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \mathrm{x} \\ $$ $$\:\:\frac{\mathrm{d}\left(\mathrm{sin}\:\mathrm{x}\right)}{\mathrm{dx}}\leqslant\:\frac{\mathrm{d}\left(\mathrm{x}\right)}{\mathrm{dx}}\:\leqslant\:\frac{\mathrm{d}\left(\mathrm{tan}\:\mathrm{x}\right)}{\mathrm{dx}} \\ $$ $$\mathrm{and}\:\mathrm{at}\:\mathrm{x}=\mathrm{0}\:,\:\mathrm{sin}\:\mathrm{x}=\mathrm{x}=\mathrm{tan}\:\mathrm{x}\:; \\ $$ $$\mathrm{hence}\:\:\:\:\mathrm{sin}\:\mathrm{x}\:\leqslant\:\mathrm{x}\:\leqslant\:\mathrm{tan}\:\mathrm{x}\:. \\ $$

Answered by mr W last updated on 21/Mar/19

Commented bymr W last updated on 21/Mar/19

OA=1  ∠AOB=x  AB^(⌢) =x  AC=sin x  AD=tan x  AC<AB^(⌢) <AD  ⇒sin x<x<tan x

$${OA}=\mathrm{1} \\ $$ $$\angle{AOB}={x} \\ $$ $$\overset{\frown} {{AB}}={x} \\ $$ $${AC}=\mathrm{sin}\:{x} \\ $$ $${AD}=\mathrm{tan}\:{x} \\ $$ $${AC}<\overset{\frown} {{AB}}<{AD} \\ $$ $$\Rightarrow\mathrm{sin}\:{x}<{x}<\mathrm{tan}\:{x} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com