All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 56698 by maxmathsup by imad last updated on 21/Mar/19
findthevalueof∫0∞sin(x2)x4+4dx
Commented by maxmathsup by imad last updated on 23/Mar/19
letA=∫0∞sin(x2)x4+4dx⇒2A=∫−∞+∞sin(x2)x4+4dx=Im(∫−∞+∞eix2x4+4dx)letbut∫−∞+∞eix2x4+4dx=x=2t∫−∞+∞ei2t24t4+42dt=24∫−∞+∞e2it2t4+1dtletφ(z)=e2iz2z4+1⇒φ(z)=e2iz2(z2−i)(z2+i)=e2iz2(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+e−iπ4)sothepolesofφare+−eiπ4and+−e−iπ4residustheoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,−e−iπ4)}Res(φ,eiπ4)=e2i(i)2eiπ4(2i)=e−24ie−iπ4Res(φ,−e−iπ4)=e2i(−i)−2e−iπ4(−2i)=e24ieiπ4⇒∫−∞+∞φ(z)dz=2iπ{e−24ie−iπ4+e24ieiπ4}=π2{e−2{12−i2}+e2{12+i2}}=π2{12(e2+e−2)+i2(e2−e−2)}⇒2A=π22(e2−e−2)⇒★A=π42(e2−e−2)★
erroratfinallines2A=24π22(e2−e−2)=π8(e2−e−2)⇒A=π16(e2−e−2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com