Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 56698 by maxmathsup by imad last updated on 21/Mar/19

find the value of ∫_0 ^∞   ((sin(x^2 ))/(x^4  +4))dx

findthevalueof0sin(x2)x4+4dx

Commented by maxmathsup by imad last updated on 23/Mar/19

let A =∫_0 ^∞  ((sin(x^2 ))/(x^4  +4)) dx ⇒2A = ∫_(−∞) ^(+∞)   ((sin(x^2 ))/(x^4  +4))dx =Im (∫_(−∞) ^(+∞)  (e^(ix^2 ) /(x^4  +4))dx) let  but ∫_(−∞) ^(+∞)   (e^(ix^2 ) /(x^4  +4)) dx =_(x=(√2)t)    ∫_(−∞) ^(+∞)   (e^(i2t^2 ) /(4t^4  +4)) (√2)dt =((√2)/4) ∫_(−∞) ^(+∞)   (e^(2it^2 ) /(t^4  +1)) dt let  ϕ(z) = (e^(2iz^2 ) /(z^4  +1)) ⇒ϕ(z) =(e^(2iz^2 ) /((z^2 −i)(z^2  +i))) =(e^(2iz^2 ) /((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  so the poles of ϕ are +^− e^((iπ)/4)  and +^−  e^(−((iπ)/4))   residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ, e^((iπ)/4) )+Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,e^((iπ)/4) ) = (e^(2i(i)) /(2e^((iπ)/4) (2i))) =(e^(−2) /(4i)) e^(−((iπ)/4))   Res(ϕ,−e^(−((iπ)/4)) ) = (e^(2i(−i)) /(−2e^(−((iπ)/4)) (−2i))) =(e^2 /(4i)) e^((iπ)/4)  ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ {(e^(−2) /(4i)) e^(−((iπ)/4))  +(e^2 /(4i)) e^((iπ)/4) } =(π/2) { e^(−2) {(1/(√2)) −(i/(√2))} +e^2 {(1/(√2)) +(i/(√2))}}  =(π/2){ (1/(√2))(e^2  +e^(−2) ) +(i/(√2))(e^2  −e^(−2) )} ⇒ 2A =(π/(2(√2)))(e^2 −e^(−2) )  ⇒  ★A =(π/(4(√2))) (e^2  −e^(−2) ) ★

letA=0sin(x2)x4+4dx2A=+sin(x2)x4+4dx=Im(+eix2x4+4dx)letbut+eix2x4+4dx=x=2t+ei2t24t4+42dt=24+e2it2t4+1dtletφ(z)=e2iz2z4+1φ(z)=e2iz2(z2i)(z2+i)=e2iz2(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)sothepolesofφare+eiπ4and+eiπ4residustheoremgive+φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,eiπ4)=e2i(i)2eiπ4(2i)=e24ieiπ4Res(φ,eiπ4)=e2i(i)2eiπ4(2i)=e24ieiπ4+φ(z)dz=2iπ{e24ieiπ4+e24ieiπ4}=π2{e2{12i2}+e2{12+i2}}=π2{12(e2+e2)+i2(e2e2)}2A=π22(e2e2)A=π42(e2e2)

Commented by maxmathsup by imad last updated on 23/Mar/19

error at final lines 2A =((√2)/4) (π/(2(√2))) (e^2 −e^(−2) ) =(π/8)(e^2 −e^(−2) ) ⇒  A =(π/(16)) (e^2  −e^(−2) ) .

erroratfinallines2A=24π22(e2e2)=π8(e2e2)A=π16(e2e2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com