All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 56699 by maxmathsup by imad last updated on 21/Mar/19
letfn(a)=∫−∞∞sin(xn)x2+a2dxwithapositifrealnot0andnfromN1)findaexplicitformoff(a)2)calculategn(a)=∫−∞+∞sin(xn)(x2+a2)2dx3)calculate∫−∞+∞sin(x3)x2+4dxand∫−∞+∞sin(x2)x2+9dx4)calculate∫−∞+∞sin(x3)(x2+4)2dx.
Commented by maxmathsup by imad last updated on 23/Mar/19
1)wehavefn(a)=Im(∫−∞+∞eixnx2+a2dx)letconsiderthecomplexfunctionφ(z)=eiznz2+a2⇒φ(z)=eizn(z−ia)(z+ia)sothepolesofφareiaand−iaresidustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,ia)Res(φ,ia)=limz→ia(z−ia)φ(z)=ei(ia)n2ia=ein+1an2ia⇒∫−∞+∞φ(z)dz=2iπein+1an2ia=πaein+1anifnisevenn=2p⇒∫−∞+∞φ(z)dz=πaei2p+1an=πaei(−1)pa2p=πa{cos((−1)pa2p+isin((−1)pa2p}⇒fn(a)=πasin((−1)pa2p)(n=2p)ifnisodd⇒n=2p+1⇒∫−∞+∞φ(z)dz=πaei2p+2a2p+1=πae(−1)p+1a2p+1⇒fn(a)=02)wehavebyderivationfn′(a)=∫−∞+∞∂∂a(sin(xn)x2+a2)dx=−∫−∞+∞2asin(xn)(x2+a2)2dx=−2agn(a)⇒gn(a)=−12afn′(a)g2p(a)=−12af2p′(a)=−12a{−πa2sin{(−1)pa2p}+πa(2p)(−1)pa2p−1cos{(−1)pa2p}=π2a3sin{(−1)pa2p}+pπa2(−1)p+1a2p−1cos{(−1)pa2p}g2p+1(a)=0duetof2p+1(a)=0.3)∫−∞+∞sin(x3)x2+4dx=f3(2)=0because3isodd.∫−∞+∞sin(x2)x2+9=f2(3)=π3sin(−9)=−π3sin(9).
4)∫−∞+∞sin(x3)(x2+4)2dx=g3(2)=0because3isodd.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com