Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 56699 by maxmathsup by imad last updated on 21/Mar/19

let f_n (a)=∫_(−∞) ^∞   ((sin(x^n ))/(x^2  +a^2 )) dx   with a positif real not 0  and n from N  1) find a explicit form of f(a)  2)  calculate g_n (a) =∫_(−∞) ^(+∞)    ((sin(x^n ))/((x^2  +a^2 )^2 ))dx  3) calculate  ∫_(−∞) ^(+∞)    ((sin(x^3 ))/(x^2  +4)) dx and ∫_(−∞) ^(+∞)   ((sin(x^2 ))/(x^2  +9))dx  4) calculate ∫_(−∞) ^(+∞)    ((sin(x^3 ))/((x^2  +4)^2 ))dx .

letfn(a)=sin(xn)x2+a2dxwithapositifrealnot0andnfromN1)findaexplicitformoff(a)2)calculategn(a)=+sin(xn)(x2+a2)2dx3)calculate+sin(x3)x2+4dxand+sin(x2)x2+9dx4)calculate+sin(x3)(x2+4)2dx.

Commented by maxmathsup by imad last updated on 23/Mar/19

1)we have f_n (a) =Im( ∫_(−∞) ^(+∞)   (e^(ix^n ) /(x^2  +a^2 ))dx)  let consider the complex function  ϕ(z) =(e^(iz^n ) /(z^2  +a^2 )) ⇒ϕ(z)=(e^(iz^n ) /((z−ia)(z+ia))) so the poles of ϕ are ia and −ia  residus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,ia)  Res(ϕ,ia) =lim_(z→ia) (z−ia)ϕ(z)= (e^(i(ia)^n ) /(2ia)) =(e^(i^(n+1) a^n ) /(2ia)) ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (e^(i^(n+1) a^n ) /(2ia)) =(π/a) e^(i^(n+1) a^n )   if n is even n=2p ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =(π/a) e^(i^(2p+1) a^n ) =(π/a) e^(i(−1)^p a^(2p) )   =(π/a){cos((−1)^p  a^(2p)  +isin((−1)^p a^(2p) } ⇒f_n (a) =(π/a) sin((−1)^p a^(2p) )  (n=2p)  if n is odd  ⇒n=2p+1 ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =(π/a) e^(i^(2p+2) a^(2p+1) ) =(π/a) e^((−1)^(p+1) a^(2p+1) )  ⇒  f_n (a) =0  2) we have by derivation f_n ^′ (a) = ∫_(−∞) ^(+∞)  (∂/∂a)(((sin(x^n ))/(x^2  +a^2 )))dx  =−∫_(−∞) ^(+∞)   ((2a sin(x^n ))/((x^2  +a^2 )^2 )) dx =−2a g_n (a) ⇒g_n (a)=−(1/(2a)) f_n ^′ (a)  g_(2p) (a) =−(1/(2a)) f_(2p) ^′ (a) =−(1/(2a)) {−(π/a^2 ) sin{(−1)^p a^(2p) }+(π/a)(2p)(−1)^p a^(2p−1) cos{(−1)^p a^(2p) }  =(π/(2a^3 )) sin{(−1)^p  a^(2p) } +((pπ)/a^2 ) (−1)^(p+1)  a^(2p−1)  cos{(−1)^p  a^(2p) }  g_(2p+1) (a) =0  due to f_(2p+1) (a)=0 .  3) ∫_(−∞) ^(+∞)    ((sin(x^3 ))/(x^2  +4)) dx =f_3 (2)=0 because 3 is odd.  ∫_(−∞) ^(+∞)    ((sin(x^2 ))/(x^2  +9)) =f_2 (3) =(π/3) sin(−9) =−(π/3) sin(9) .

1)wehavefn(a)=Im(+eixnx2+a2dx)letconsiderthecomplexfunctionφ(z)=eiznz2+a2φ(z)=eizn(zia)(z+ia)sothepolesofφareiaandiaresidustheoremgive+φ(z)dz=2iπRes(φ,ia)Res(φ,ia)=limzia(zia)φ(z)=ei(ia)n2ia=ein+1an2ia+φ(z)dz=2iπein+1an2ia=πaein+1anifnisevenn=2p+φ(z)dz=πaei2p+1an=πaei(1)pa2p=πa{cos((1)pa2p+isin((1)pa2p}fn(a)=πasin((1)pa2p)(n=2p)ifnisoddn=2p+1+φ(z)dz=πaei2p+2a2p+1=πae(1)p+1a2p+1fn(a)=02)wehavebyderivationfn(a)=+a(sin(xn)x2+a2)dx=+2asin(xn)(x2+a2)2dx=2agn(a)gn(a)=12afn(a)g2p(a)=12af2p(a)=12a{πa2sin{(1)pa2p}+πa(2p)(1)pa2p1cos{(1)pa2p}=π2a3sin{(1)pa2p}+pπa2(1)p+1a2p1cos{(1)pa2p}g2p+1(a)=0duetof2p+1(a)=0.3)+sin(x3)x2+4dx=f3(2)=0because3isodd.+sin(x2)x2+9=f2(3)=π3sin(9)=π3sin(9).

Commented by maxmathsup by imad last updated on 23/Mar/19

4) ∫_(−∞) ^(+∞)   ((sin(x^3 ))/((x^2  +4)^2 ))dx =g_3 (2)=0 because 3 is odd.

4)+sin(x3)(x2+4)2dx=g3(2)=0because3isodd.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com