Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 5672 by sanusihammed last updated on 23/May/16

Differentiate    ((lnx)/e^x )    fom the first principle.    Please help me.

Differentiatelnxexfomthefirstprinciple.Pleasehelpme.

Answered by Yozzii last updated on 23/May/16

Let y=((lnx)/e^x ). From first principles  (dy/dx)=lim_(h→0) ((f(x+h)−f(x))/h)  =lim_(h→0) ((e^(−x−h) ln(x+h)−e^(−x) lnx)/h)  =lim_(h→0) (((ln(x+h))/(he^(x+h) ))−((lnx)/(he^x )))  =lim_(h→0) ((ln(x+h)−e^h lnx)/(he^x e^h ))  =e^(−x) lim_(h→0) (1/(he^h ))(ln(x+h)−lnx^e^h  )  =e^(−x) lim_(h→0) (1/(he^h ))ln((x+h)/x^e^h  )  (dy/dx)=e^(−x) lim_(h→0) ln(x^(1−e^h ) +(h/x^e^h  ))^(1/he^h )   ln(dy/dx)=ln{e^(−x) }+ln(lim_(h→0) {(1/e^h )ln[(x^(1−e^h ) +(h/x^e^h  ))^(1/h) ]})  ln(dy/dx)=−x+ln(lim_(h→0) (1/h)lnx^(1−e^h ) (1+(h/x)))  ln(dy/dx)=−x+ln(lim_(h→0) (((1−e^h )/h)lnx+(1/h)ln(1+(h/x))))    • e is a number such that for u being  any number, e^u =1+u+(u^2 /(2!))+(u^3 /(3!))+...+(u^n /(n!))+...  • For j∈(−1,1] one can write  ln(1+j)=j−(j^2 /2)+(j^3 /3)−(j^4 /4)+...+(((−1)^(n+1) j^n )/n)+...    ∴ ln(dy/dx)=−x+ln{(lnx)lim_(h→0) (1/h)(1−1−h−(h^2 /(2!))−(h^3 /(3!))−...)+lim_(h→0) (1/h)((h/x)−(h^2 /(2x^2 ))+(h^3 /(3x^3 ))−...)}  ln(dy/dx)=−x+ln{(lnx)lim_(h→0) (−1−(h/(2!))−(h^2 /(3!))−...)+lim_(h→0) ((1/x)−(h/(2x^2 ))+(h^2 /(3x^3 ))−...)}  ln(dy/dx)=−x+ln{(lnx)(−1)+(1/x)}  (dy/dx)=exp(−x+ln(x^(−1) −lnx))=e^(−x) ×(x^(−1) −lnx)

Lety=lnxex.Fromfirstprinciplesdydx=limh0f(x+h)f(x)h=limh0exhln(x+h)exlnxh=limh0(ln(x+h)hex+hlnxhex)=limh0ln(x+h)ehlnxhexeh=exlimh01heh(ln(x+h)lnxeh)=exlimh01hehlnx+hxehdydx=exlimh0ln(x1eh+hxeh)1/hehlndydx=ln{ex}+ln(limh0{1ehln[(x1eh+hxeh)1/h]})lndydx=x+ln(limh01hlnx1eh(1+hx))lndydx=x+ln(limh0(1ehhlnx+1hln(1+hx)))eisanumbersuchthatforubeinganynumber,eu=1+u+u22!+u33!+...+unn!+...Forj(1,1]onecanwriteln(1+j)=jj22+j33j44+...+(1)n+1jnn+...lndydx=x+ln{(lnx)limh01h(11hh22!h33!...)+limh01h(hxh22x2+h33x3...)}lndydx=x+ln{(lnx)limh0(1h2!h23!...)+limh0(1xh2x2+h23x3...)}lndydx=x+ln{(lnx)(1)+1x}dydx=exp(x+ln(x1lnx))=ex×(x1lnx)

Commented by sanusihammed last updated on 24/May/16

This is great . wow.

Thisisgreat.wow.

Commented by sanusihammed last updated on 24/May/16

Thanks so much.

Thankssomuch.

Commented by Yozzii last updated on 23/May/16

Alternatively, one could prove the  quotient rule from first principles  and subsequently apply it.     Let r(x)=((u(x))/(v(x))) where u and v are functions  of x and v(x)≠0.  ∴ r(x+h)=((u(x+h))/(v(x+h)))     (h=δx)  ∴r(x+h)−r(x)=((u(x+h))/(v(x+h)))−((u(x))/(v(x)))=δr(x)  =((v(x)(u(x+h)−u(x)+u(x))−u(x)(v(x+h)−v(x)+v(x)))/(v(x+h)v(x)))  δr(x)=((v(x)δu(x)+v(x)u(x)−u(x)δv(x)−u(x)v(x))/(v(x+h)v(x)))  δr(x)=((v(x)δu(x)−u(x)δv(x))/(v(x+δx)v(x)))  By definition of the derivative,  (dr/dx)=lim_(δx→0) ((δr(x))/(δx))=lim_(δx→0) (1/(δx))(((v(x)δu(x)−u(x)δv(x))/(v(x+δx)v(x))))  (dr/dx)=lim_(δx→0) ((v(x)((δu(x))/(δx))−u(x)((δv(x))/(δx)))/(v(x+δx)v(x)))  Since v(x)≠0 for all x∈R, by the algebra  of limits,  ⇒(dr/dx)=((lim_(δx→0) (v(x)((δu(x))/(δx))−u(x)((δv(x))/(δx))))/(lim_(δx→0) {v(x+δx)v(x)}))  (dr/dx)=((v(x)(lim_(δx→0) ((δu(x))/(δx)))−u(x)(lim_(δx→0) ((δv(x))/(δx))))/(lim_(δx→0) {v(x+δx)v(x)}))  Now, we substitute the following results:  lim_(δx→0) ((δu(x))/(δx))=(du/dx), lim_(δx→0) ((δv(x))/(δx))=(dv/dx)   &   lim_(δx→0) {v(x+δx)v(x)}=v(x+0)v(x)=v^2 (x).  ∴(dr/dx)=((v(x)(du/dx)−u(x)(dv/dx))/(v^2 (x)))                                        □    So, if r(x)=((lnx)/e^x )  ⇒(dr/dx)=((e^x x^(−1) −e^x lnx)/e^(2x) )=((x^(−1) −lnx)/e^x ).

Alternatively,onecouldprovethequotientrulefromfirstprinciplesandsubsequentlyapplyit.Letr(x)=u(x)v(x)whereuandvarefunctionsofxandv(x)0.r(x+h)=u(x+h)v(x+h)(h=δx)r(x+h)r(x)=u(x+h)v(x+h)u(x)v(x)=δr(x)=v(x)(u(x+h)u(x)+u(x))u(x)(v(x+h)v(x)+v(x))v(x+h)v(x)δr(x)=v(x)δu(x)+v(x)u(x)u(x)δv(x)u(x)v(x)v(x+h)v(x)δr(x)=v(x)δu(x)u(x)δv(x)v(x+δx)v(x)Bydefinitionofthederivative,drdx=limδx0δr(x)δx=limδx01δx(v(x)δu(x)u(x)δv(x)v(x+δx)v(x))drdx=limδx0v(x)δu(x)δxu(x)δv(x)δxv(x+δx)v(x)Sincev(x)0forallxR,bythealgebraoflimits,drdx=limδx0(v(x)δu(x)δxu(x)δv(x)δx)limδx0{v(x+δx)v(x)}drdx=v(x)(limδx0δu(x)δx)u(x)(limδx0δv(x)δx)limδx0{v(x+δx)v(x)}Now,wesubstitutethefollowingresults:limδx0δu(x)δx=dudx,limδx0δv(x)δx=dvdx&limδx0{v(x+δx)v(x)}=v(x+0)v(x)=v2(x).drdx=v(x)dudxu(x)dvdxv2(x)So,ifr(x)=lnxexdrdx=exx1exlnxe2x=x1lnxex.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com