Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 56828 by maxmathsup by imad last updated on 24/Mar/19

study the convergence of u_(n+1) =2(√(1+u_n ^2 ))−u_n −1    with u_0 =0

$${study}\:{the}\:{convergence}\:{of}\:{u}_{{n}+\mathrm{1}} =\mathrm{2}\sqrt{\mathrm{1}+{u}_{{n}} ^{\mathrm{2}} }−{u}_{{n}} −\mathrm{1}\:\:\:\:{with}\:{u}_{\mathrm{0}} =\mathrm{0} \\ $$

Commented by maxmathsup by imad last updated on 16/Apr/19

we have u_(n+1) =f(u_n ) withf(x)=2(√(1+x^2 ))−x−1  let prove that u_n >0   we have u_1 =2−1=1>0 let suppose u_n >0  2(√(1+u_n ^2 ))−u_n −1 =2(√(1+u_n ^2 )) −(u_n  +1)  and 4(1+u_n ^2 )−(u_n +1)^2   =4u_n ^2  +4 −u_n ^2  −2u_n −1 =2u_n ^2  −2u_n  +3 →Δ =4−4(2).3 <0   (a=2 >0)⇒  2u_n ^2 −u_n +3   for that let study the variation of f on[0,+∞[  f^′ (x) =2 ((2x)/(2(√(1+x^2 )))) −1 =((2x)/(√(1+x^2 ))) −1 =((2x−(√(1+x^2 )))/(√(1+x^2 ))) =((4x^2 −1−x^2 )/((√(1+x^2 ))(2x+(√(1+x^2 )))))  =((3x^2 −1)/(√(1+x^2 (2x +(√(1+x^2 )))))) so f^′ (x)=0 ⇔ x =(1/(√3))  f((1/(√3))) =2(√(1+(1/3)))−(1/(√3)) −1 =(4/(√3)) −(1/(√3)) −1 =(√3)−1   x         0                     (1/(√3))                              +∞  f^′ (x)              −                    +  f(x)   1    decr     (√3)−1          incr    +∞  let determine  the fixed  point    f(x) =x  ⇒2(√(1+x^2 )) −x−1 =x ⇒2(√(1+x^2 ))=2x +1 ⇒4(1+x^2 ) =4x^2  +4x +1 ⇒  4 =4x+1 ⇒4x =3 ⇒x =(3/4)  f is continue on [0,+∞[ so (u_n )converges and  lim_(n→+∞)  u_n =(3/4) .

$${we}\:{have}\:{u}_{{n}+\mathrm{1}} ={f}\left({u}_{{n}} \right)\:{withf}\left({x}\right)=\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−{x}−\mathrm{1} \\ $$$${let}\:{prove}\:{that}\:{u}_{{n}} >\mathrm{0}\:\:\:{we}\:{have}\:{u}_{\mathrm{1}} =\mathrm{2}−\mathrm{1}=\mathrm{1}>\mathrm{0}\:{let}\:{suppose}\:{u}_{{n}} >\mathrm{0} \\ $$$$\mathrm{2}\sqrt{\mathrm{1}+{u}_{{n}} ^{\mathrm{2}} }−{u}_{{n}} −\mathrm{1}\:=\mathrm{2}\sqrt{\mathrm{1}+{u}_{{n}} ^{\mathrm{2}} }\:−\left({u}_{{n}} \:+\mathrm{1}\right)\:\:{and}\:\mathrm{4}\left(\mathrm{1}+{u}_{{n}} ^{\mathrm{2}} \right)−\left({u}_{{n}} +\mathrm{1}\right)^{\mathrm{2}} \\ $$$$=\mathrm{4}{u}_{{n}} ^{\mathrm{2}} \:+\mathrm{4}\:−{u}_{{n}} ^{\mathrm{2}} \:−\mathrm{2}{u}_{{n}} −\mathrm{1}\:=\mathrm{2}{u}_{{n}} ^{\mathrm{2}} \:−\mathrm{2}{u}_{{n}} \:+\mathrm{3}\:\rightarrow\Delta\:=\mathrm{4}−\mathrm{4}\left(\mathrm{2}\right).\mathrm{3}\:<\mathrm{0}\:\:\:\left({a}=\mathrm{2}\:>\mathrm{0}\right)\Rightarrow \\ $$$$\mathrm{2}{u}_{{n}} ^{\mathrm{2}} −{u}_{{n}} +\mathrm{3}\:\:\:{for}\:{that}\:{let}\:{study}\:{the}\:{variation}\:{of}\:{f}\:{on}\left[\mathrm{0},+\infty\left[\right.\right. \\ $$$$\left.{f}^{'} \left({x}\right)\:=\mathrm{2}\:\frac{\mathrm{2}{x}}{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:−\mathrm{1}\:=\frac{\mathrm{2}{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:−\mathrm{1}\:=\frac{\mathrm{2}{x}−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:=\frac{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{1}−{x}^{\mathrm{2}} }{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\left(\mathrm{2}{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right.}\right) \\ $$$$=\frac{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \left(\mathrm{2}{x}\:+\sqrt{\left.\mathrm{1}+{x}^{\mathrm{2}} \right)}\right.}}\:{so}\:{f}^{'} \left({x}\right)=\mathrm{0}\:\Leftrightarrow\:{x}\:=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$${f}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\right)\:=\mathrm{2}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}}−\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\:−\mathrm{1}\:=\frac{\mathrm{4}}{\sqrt{\mathrm{3}}}\:−\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\:−\mathrm{1}\:=\sqrt{\mathrm{3}}−\mathrm{1}\: \\ $$$${x}\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$${f}^{'} \left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+ \\ $$$${f}\left({x}\right)\:\:\:\mathrm{1}\:\:\:\:{decr}\:\:\:\:\:\sqrt{\mathrm{3}}−\mathrm{1}\:\:\:\:\:\:\:\:\:\:{incr}\:\:\:\:+\infty \\ $$$${let}\:{determine}\:\:{the}\:{fixed}\:\:{point}\:\: \\ $$$${f}\left({x}\right)\:={x}\:\:\Rightarrow\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−{x}−\mathrm{1}\:={x}\:\Rightarrow\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }=\mathrm{2}{x}\:+\mathrm{1}\:\Rightarrow\mathrm{4}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:=\mathrm{4}{x}^{\mathrm{2}} \:+\mathrm{4}{x}\:+\mathrm{1}\:\Rightarrow \\ $$$$\mathrm{4}\:=\mathrm{4}{x}+\mathrm{1}\:\Rightarrow\mathrm{4}{x}\:=\mathrm{3}\:\Rightarrow{x}\:=\frac{\mathrm{3}}{\mathrm{4}}\:\:{f}\:{is}\:{continue}\:{on}\:\left[\mathrm{0},+\infty\left[\:{so}\:\left({u}_{{n}} \right){converges}\:{and}\right.\right. \\ $$$${lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} =\frac{\mathrm{3}}{\mathrm{4}}\:. \\ $$

Answered by kaivan.ahmadi last updated on 25/Mar/19

l=2(√(1+l^2 ))−l−1⇒2l+1=2(√(1+l^2 ))⇒  4l^2 +4l+1=4+4l^2 ⇒4l=3⇒l=(3/4)

$${l}=\mathrm{2}\sqrt{\mathrm{1}+{l}^{\mathrm{2}} }−{l}−\mathrm{1}\Rightarrow\mathrm{2}{l}+\mathrm{1}=\mathrm{2}\sqrt{\mathrm{1}+{l}^{\mathrm{2}} }\Rightarrow \\ $$$$\mathrm{4}{l}^{\mathrm{2}} +\mathrm{4}{l}+\mathrm{1}=\mathrm{4}+\mathrm{4}{l}^{\mathrm{2}} \Rightarrow\mathrm{4}{l}=\mathrm{3}\Rightarrow{l}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com