Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 56886 by gunawan last updated on 25/Mar/19

Σ_(r=0) ^n ^n C_r ((1+r log_e 10)/((1+log_e 10^n )^r ))  equals

$$\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:^{{n}} {C}_{{r}} \frac{\mathrm{1}+{r}\:\mathrm{log}_{{e}} \mathrm{10}}{\left(\mathrm{1}+\mathrm{log}_{{e}} \mathrm{10}^{{n}} \right)^{{r}} }\:\:\mathrm{equals} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 27/Mar/19

a=log_e 10 and (1+nlog_e 10)=b [b=1+na]  Σ_(r=0) ^n  nC_r ×((1+ar)/((b)^r ))=Σ_(r=0) ^n nC_r ×(1/b^r )+aΣ_(r=0) ^n nC_r ×(r/b^r )  (1+(1/b))^n =nC_0 ×1^n +nC_1 ×(1/b^1 )+nC_2 ×(1/b^2 )+..+nC_n ×(1/b^n )  so Σ_(r=0) ^n nC_r ×(1/b^r )=(1+(1/b))^n ⇚look here  aΣ_(r=0) ^n nC_r ×(r/b^r )  =a(nC_o ×(0/b^0 )+nC_1 ×(1/b^1 )+nC_2 ×(2/b^2 )+..+nC_n ×(n/b^n ))  now (1+(x/b))^n =nC_0 ×(x^0 /b^0 )+nC_1 ×(x^1 /b^1 )+nC_2 ×(x^2 /b^2 )+..+nC_n ×(x^n /b^n )  differentiate both side w.r.t x  n(1+(x/b))^(n−1) ×(1/b)=nC_0 ×0+nC_1 ×(1/b^1 )+nC_2 ×((2x)/b^2 )+...+nC_n ×((nx^(n−1) )/b^n )  now put x=1 both side  n(1+(1/b))^(n−1) =Σ_(r=0) ^n nC_r ×(r/b^r )  so value of aΣ_(r=0) ^n nC_r ×(r/b^r )=a×n(1+(1/b))^(n−1)  ⇚look here  hence rewuired answer is  Σ_(r=0) ^n nC_r ×(1/b^r )+aΣ_(r=0) ^n nC_n ×(r/b^r )  =(1+(1/b))^n +a×n(1+(1/b))^(n−1)   =(1+(1/b))^(n−1) ×(1+(1/b)+an)  [b=1+na and a=log_e 10]  =(1+(1/(1+na)))^(n−1) ×(1+na+(1/(1+na)))  =(1+(1/(nlog_e 10)))^(n−1) (1+nlog_e 10+(1/(1+nlog_e 10)))

$${a}={log}_{{e}} \mathrm{10}\:{and}\:\left(\mathrm{1}+{nlog}_{{e}} \mathrm{10}\right)={b}\:\left[{b}=\mathrm{1}+{na}\right] \\ $$$$\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:{nC}_{{r}} ×\frac{\mathrm{1}+{ar}}{\left({b}\right)^{{r}} }=\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{nC}_{{r}} ×\frac{\mathrm{1}}{{b}^{{r}} }+{a}\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{nC}_{{r}} ×\frac{{r}}{{b}^{{r}} } \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)^{{n}} ={nC}_{\mathrm{0}} ×\mathrm{1}^{{n}} +{nC}_{\mathrm{1}} ×\frac{\mathrm{1}}{{b}^{\mathrm{1}} }+{nC}_{\mathrm{2}} ×\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+..+{nC}_{{n}} ×\frac{\mathrm{1}}{{b}^{{n}} } \\ $$$${so}\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{nC}_{{r}} ×\frac{\mathrm{1}}{{b}^{{r}} }=\left(\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)^{{n}} \Lleftarrow{look}\:{here} \\ $$$${a}\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{nC}_{{r}} ×\frac{{r}}{{b}^{{r}} } \\ $$$$={a}\left({nC}_{{o}} ×\frac{\mathrm{0}}{{b}^{\mathrm{0}} }+{nC}_{\mathrm{1}} ×\frac{\mathrm{1}}{{b}^{\mathrm{1}} }+{nC}_{\mathrm{2}} ×\frac{\mathrm{2}}{{b}^{\mathrm{2}} }+..+{nC}_{{n}} ×\frac{{n}}{{b}^{{n}} }\right) \\ $$$${now}\:\left(\mathrm{1}+\frac{{x}}{{b}}\right)^{{n}} ={nC}_{\mathrm{0}} ×\frac{{x}^{\mathrm{0}} }{{b}^{\mathrm{0}} }+{nC}_{\mathrm{1}} ×\frac{{x}^{\mathrm{1}} }{{b}^{\mathrm{1}} }+{nC}_{\mathrm{2}} ×\frac{{x}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+..+{nC}_{{n}} ×\frac{{x}^{{n}} }{{b}^{{n}} } \\ $$$${differentiate}\:{both}\:{side}\:{w}.{r}.{t}\:{x} \\ $$$${n}\left(\mathrm{1}+\frac{{x}}{{b}}\right)^{{n}−\mathrm{1}} ×\frac{\mathrm{1}}{{b}}={nC}_{\mathrm{0}} ×\mathrm{0}+{nC}_{\mathrm{1}} ×\frac{\mathrm{1}}{{b}^{\mathrm{1}} }+{nC}_{\mathrm{2}} ×\frac{\mathrm{2}{x}}{{b}^{\mathrm{2}} }+...+{nC}_{{n}} ×\frac{{nx}^{{n}−\mathrm{1}} }{{b}^{{n}} } \\ $$$${now}\:{put}\:{x}=\mathrm{1}\:{both}\:{side} \\ $$$${n}\left(\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)^{{n}−\mathrm{1}} =\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{nC}_{{r}} ×\frac{{r}}{{b}^{{r}} } \\ $$$${so}\:{value}\:{of}\:{a}\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{nC}_{{r}} ×\frac{{r}}{{b}^{{r}} }={a}×{n}\left(\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)^{{n}−\mathrm{1}} \:\Lleftarrow{look}\:{here} \\ $$$${hence}\:{rewuired}\:{answer}\:{is} \\ $$$$\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{nC}_{{r}} ×\frac{\mathrm{1}}{{b}^{{r}} }+{a}\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{nC}_{{n}} ×\frac{{r}}{{b}^{{r}} } \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)^{{n}} +{a}×{n}\left(\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)^{{n}−\mathrm{1}} \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)^{{n}−\mathrm{1}} ×\left(\mathrm{1}+\frac{\mathrm{1}}{{b}}+{an}\right)\:\:\left[{b}=\mathrm{1}+{na}\:{and}\:{a}={log}_{{e}} \mathrm{10}\right] \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+{na}}\right)^{{n}−\mathrm{1}} ×\left(\mathrm{1}+{na}+\frac{\mathrm{1}}{\mathrm{1}+{na}}\right) \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{1}}{{nlog}_{{e}} \mathrm{10}}\right)^{{n}−\mathrm{1}} \left(\mathrm{1}+{nlog}_{{e}} \mathrm{10}+\frac{\mathrm{1}}{\mathrm{1}+{nlog}_{{e}} \mathrm{10}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com