Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 56954 by rahul 19 last updated on 27/Mar/19

Find minimum value of :  cos(ω−φ)+cos(φ−ϕ)+cos (ϕ−ω).

$${Find}\:{minimum}\:{value}\:{of}\:: \\ $$$${cos}\left(\omega−\phi\right)+\mathrm{cos}\left(\phi−\varphi\right)+\mathrm{cos}\:\left(\varphi−\omega\right). \\ $$

Commented by rahul 19 last updated on 27/Mar/19

Ans:−(3/2)

$${Ans}:−\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 27/Mar/19

sinw=a_1    sin∅=a_2     sinϕ=a_3   cosw=b_1    cos∅=b_2     cosϕ=b_3   k=b_1 b_2 +a_1 a_2 +b_2 b_3 +a_2 a_3 +b_1 b_3 +a_1 a_3   2k+3=2(a_1 a_2 +a_2 a_3 +a_1 a_3 +b_1 b_2 +b_2 b_3 +b_1 b_3 )+a_1 ^2 +b_1 ^2 +a_2 ^2 +b_2 ^2 +a_3 ^2 +b_3 ^2   2k+3=(a_1 +a_2 +a_3 )^2 +(b_1 +b_2 +b_3 )^2   k=(((a_1 +a_2 +a_3 )^2  +(b_1 +b_2 +b_3 )^2 −3)/2)  value of k is minimum when (a_1 +a_2 +a_3 )^2 =0  and (b_1 +b_2 +b_3 )^2 =0  so k_(min) =((−3)/2)  proved

$${sinw}={a}_{\mathrm{1}} \:\:\:{sin}\emptyset={a}_{\mathrm{2}} \:\:\:\:{sin}\varphi={a}_{\mathrm{3}} \\ $$$${cosw}={b}_{\mathrm{1}} \:\:\:{cos}\emptyset={b}_{\mathrm{2}} \:\:\:\:{cos}\varphi={b}_{\mathrm{3}} \\ $$$${k}={b}_{\mathrm{1}} {b}_{\mathrm{2}} +{a}_{\mathrm{1}} {a}_{\mathrm{2}} +{b}_{\mathrm{2}} {b}_{\mathrm{3}} +{a}_{\mathrm{2}} {a}_{\mathrm{3}} +{b}_{\mathrm{1}} {b}_{\mathrm{3}} +{a}_{\mathrm{1}} {a}_{\mathrm{3}} \\ $$$$\mathrm{2}{k}+\mathrm{3}=\mathrm{2}\left({a}_{\mathrm{1}} {a}_{\mathrm{2}} +{a}_{\mathrm{2}} {a}_{\mathrm{3}} +{a}_{\mathrm{1}} {a}_{\mathrm{3}} +{b}_{\mathrm{1}} {b}_{\mathrm{2}} +{b}_{\mathrm{2}} {b}_{\mathrm{3}} +{b}_{\mathrm{1}} {b}_{\mathrm{3}} \right)+{a}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} +{a}_{\mathrm{3}} ^{\mathrm{2}} +{b}_{\mathrm{3}} ^{\mathrm{2}} \\ $$$$\mathrm{2}{k}+\mathrm{3}=\left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} \right)^{\mathrm{2}} +\left({b}_{\mathrm{1}} +{b}_{\mathrm{2}} +{b}_{\mathrm{3}} \right)^{\mathrm{2}} \\ $$$${k}=\frac{\left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} \right)^{\mathrm{2}} \:+\left({b}_{\mathrm{1}} +{b}_{\mathrm{2}} +{b}_{\mathrm{3}} \right)^{\mathrm{2}} −\mathrm{3}}{\mathrm{2}} \\ $$$${value}\:{of}\:{k}\:{is}\:{minimum}\:{when}\:\left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} \right)^{\mathrm{2}} =\mathrm{0} \\ $$$${and}\:\left({b}_{\mathrm{1}} +{b}_{\mathrm{2}} +{b}_{\mathrm{3}} \right)^{\mathrm{2}} =\mathrm{0} \\ $$$${so}\:{k}_{{min}} =\frac{−\mathrm{3}}{\mathrm{2}}\:\:{proved} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by rahul 19 last updated on 27/Mar/19

thank you sir!

Answered by mr W last updated on 27/Mar/19

let ω−φ=α, φ−ϕ=β  ϕ−ω=−(ω−φ+φ−ϕ)=−(α+β)    cos(ω−φ)+cos(φ−ϕ)+cos (ϕ−ω)  =cos α+cos β+cos (α+β)=F(α,β)    (∂F/∂α)=−sin α−sin (α+β)=0   ...(i)  (∂F/∂β)=−sin β−sin (α+β)=0   ...(ii)  ⇒α=β  ⇒sin α=−sin 2α=−2sin α cos α  ⇒sin α=0⇒F_(max) =3  ⇒cos α=−(1/2)⇒F_(min) =−(1/2)−(1/2)+2(−(1/2))^2 −1=−(3/2)

$${let}\:\omega−\phi=\alpha,\:\phi−\varphi=\beta \\ $$$$\varphi−\omega=−\left(\omega−\phi+\phi−\varphi\right)=−\left(\alpha+\beta\right) \\ $$$$ \\ $$$${cos}\left(\omega−\phi\right)+\mathrm{cos}\left(\phi−\varphi\right)+\mathrm{cos}\:\left(\varphi−\omega\right) \\ $$$$=\mathrm{cos}\:\alpha+\mathrm{cos}\:\beta+\mathrm{cos}\:\left(\alpha+\beta\right)={F}\left(\alpha,\beta\right) \\ $$$$ \\ $$$$\frac{\partial{F}}{\partial\alpha}=−\mathrm{sin}\:\alpha−\mathrm{sin}\:\left(\alpha+\beta\right)=\mathrm{0}\:\:\:...\left({i}\right) \\ $$$$\frac{\partial{F}}{\partial\beta}=−\mathrm{sin}\:\beta−\mathrm{sin}\:\left(\alpha+\beta\right)=\mathrm{0}\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow\alpha=\beta \\ $$$$\Rightarrow\mathrm{sin}\:\alpha=−\mathrm{sin}\:\mathrm{2}\alpha=−\mathrm{2sin}\:\alpha\:\mathrm{cos}\:\alpha \\ $$$$\Rightarrow\mathrm{sin}\:\alpha=\mathrm{0}\Rightarrow{F}_{{max}} =\mathrm{3} \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=−\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow{F}_{{min}} =−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{1}=−\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Commented by rahul 19 last updated on 27/Mar/19

Ausgezichnet! ����

Commented by mr W last updated on 27/Mar/19

Danke sehr!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com