Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 5704 by sanusihammed last updated on 24/May/16

Show that ...    Limit      [((3^x  − 3^(−x) )/(3^(x )  + 3^(−x) ))] = − 1  x → −∞

$${Show}\:{that}\:... \\ $$$$ \\ $$$${Limit}\:\:\:\:\:\:\left[\frac{\mathrm{3}^{{x}} \:−\:\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}\:} \:+\:\mathrm{3}^{−{x}} }\right]\:=\:−\:\mathrm{1} \\ $$$${x}\:\rightarrow\:−\infty \\ $$

Answered by FilupSmith last updated on 24/May/16

L=lim_(x→−∞)  ((3^x −3^(−x) )/(3^x +3^(−x) ))  =lim_(x→−∞)  ((3^x −(1/3^x ))/(3^x +(1/3^x )))  =lim_(x→−∞)  (((3^(2x) −1)/3^x )/((3^(2x) +1)/3^x ))  =lim_(x→−∞)  ((3^x (3^(2x) −1))/(3^x (3^(2x) +1)))  =lim_(x→−∞)  ((3^(2x) −1)/(3^(2x) +1))  use quotant rule  =lim_(x→−∞)  ((3^(2x) −1)/(3^(2(−∞)) +1))  =lim_(x→−∞)  ((3^(2x) −1)/1)  =lim_(x→−∞)  3^(2x) −1  L=−1

$${L}=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{{x}} −\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} } \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{{x}} −\frac{\mathrm{1}}{\mathrm{3}^{{x}} }}{\mathrm{3}^{{x}} +\frac{\mathrm{1}}{\mathrm{3}^{{x}} }} \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\frac{\mathrm{3}^{\mathrm{2}{x}} −\mathrm{1}}{\mathrm{3}^{{x}} }}{\frac{\mathrm{3}^{\mathrm{2}{x}} +\mathrm{1}}{\mathrm{3}^{{x}} }} \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{{x}} \left(\mathrm{3}^{\mathrm{2}{x}} −\mathrm{1}\right)}{\mathrm{3}^{{x}} \left(\mathrm{3}^{\mathrm{2}{x}} +\mathrm{1}\right)} \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{\mathrm{2}{x}} −\mathrm{1}}{\mathrm{3}^{\mathrm{2}{x}} +\mathrm{1}} \\ $$$$\mathrm{use}\:\mathrm{quotant}\:\mathrm{rule} \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{\mathrm{2}{x}} −\mathrm{1}}{\mathrm{3}^{\mathrm{2}\left(−\infty\right)} +\mathrm{1}} \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{\mathrm{2}{x}} −\mathrm{1}}{\mathrm{1}} \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\mathrm{3}^{\mathrm{2}{x}} −\mathrm{1} \\ $$$${L}=−\mathrm{1} \\ $$

Commented by Yozzii last updated on 24/May/16

The definition of the limit of f(x) to −∞,  if it exists,can be used to verify that the limit  found is plausible.  −−−−−−−−−−−−−−−−−−−−−  According to the ε−δ definition of  the limit lim_(x→−∞) f(x)=l, for any ε>0 there  exists a number δ<0 such that ∣f(x)−l∣<ε whenever x<δ.  Suppose that δ=((ln(2ε^(−1) −1)^(−1) )/(2ln3)), (2ε^(−1) −1>0⇒ε<2 which is appropriate for closeness)  Then, if x<δ  ⇒x<((ln(2ε^(−1) −1)^(−1) )/(2ln3))  ln3^(2x) <−ln(2ε^(−1) −1)  ln3^(−2x) >ln(2ε^(−1) −1)  3^(−2x) >2ε^(−1) −1  3^(−2x) +1>2ε^(−1)   (2/(1+3^(−2x) ))<ε  ((2×3^x )/(3^x +3^(−x) ))<ε  ((2×3^x +3^(−x) −3^(−x) )/(3^x +3^(−x) ))<ε  ((3^x −3^(−x) +3^x +3^(−x) )/(3^x +3^(−x) ))<ε  ((3^x −3^(−x) )/(3^x +3^(−x) ))+1<ε  ⇒∣((3^x −3^(−x) )/(3^x +3^(−x) ))+1∣<∣ε∣=ε     ∵ ε>0  ∴∣((3^x −3^(−x) )/(3^x +3^(−x) ))−(−1)∣<ε   whenever   x<δ=((ln(2ε^(−1) −1))/(−2ln3)).  So indeed lim_(x→−∞) ((3^x −3^(−x) )/(3^x +3^(−x) ))=−1.

$${The}\:{definition}\:{of}\:{the}\:{limit}\:{of}\:{f}\left({x}\right)\:{to}\:−\infty, \\ $$$${if}\:{it}\:{exists},{can}\:{be}\:{used}\:{to}\:{verify}\:{that}\:{the}\:{limit} \\ $$$${found}\:{is}\:{plausible}. \\ $$$$−−−−−−−−−−−−−−−−−−−−− \\ $$$${According}\:{to}\:{the}\:\epsilon−\delta\:{definition}\:{of} \\ $$$${the}\:{limit}\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}{f}\left({x}\right)={l},\:{for}\:{any}\:\epsilon>\mathrm{0}\:{there} \\ $$$${exists}\:{a}\:{number}\:\delta<\mathrm{0}\:{such}\:{that}\:\mid{f}\left({x}\right)−{l}\mid<\epsilon\:{whenever}\:{x}<\delta. \\ $$$${Suppose}\:{that}\:\delta=\frac{{ln}\left(\mathrm{2}\epsilon^{−\mathrm{1}} −\mathrm{1}\right)^{−\mathrm{1}} }{\mathrm{2}{ln}\mathrm{3}},\:\left(\mathrm{2}\epsilon^{−\mathrm{1}} −\mathrm{1}>\mathrm{0}\Rightarrow\epsilon<\mathrm{2}\:{which}\:{is}\:{appropriate}\:{for}\:{closeness}\right) \\ $$$${Then},\:{if}\:{x}<\delta \\ $$$$\Rightarrow{x}<\frac{{ln}\left(\mathrm{2}\epsilon^{−\mathrm{1}} −\mathrm{1}\right)^{−\mathrm{1}} }{\mathrm{2}{ln}\mathrm{3}} \\ $$$${ln}\mathrm{3}^{\mathrm{2}{x}} <−{ln}\left(\mathrm{2}\epsilon^{−\mathrm{1}} −\mathrm{1}\right) \\ $$$${ln}\mathrm{3}^{−\mathrm{2}{x}} >{ln}\left(\mathrm{2}\epsilon^{−\mathrm{1}} −\mathrm{1}\right) \\ $$$$\mathrm{3}^{−\mathrm{2}{x}} >\mathrm{2}\epsilon^{−\mathrm{1}} −\mathrm{1} \\ $$$$\mathrm{3}^{−\mathrm{2}{x}} +\mathrm{1}>\mathrm{2}\epsilon^{−\mathrm{1}} \\ $$$$\frac{\mathrm{2}}{\mathrm{1}+\mathrm{3}^{−\mathrm{2}{x}} }<\epsilon \\ $$$$\frac{\mathrm{2}×\mathrm{3}^{{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }<\epsilon \\ $$$$\frac{\mathrm{2}×\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} −\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }<\epsilon \\ $$$$\frac{\mathrm{3}^{{x}} −\mathrm{3}^{−{x}} +\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }<\epsilon \\ $$$$\frac{\mathrm{3}^{{x}} −\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }+\mathrm{1}<\epsilon \\ $$$$\Rightarrow\mid\frac{\mathrm{3}^{{x}} −\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }+\mathrm{1}\mid<\mid\epsilon\mid=\epsilon\:\:\:\:\:\because\:\epsilon>\mathrm{0} \\ $$$$\therefore\mid\frac{\mathrm{3}^{{x}} −\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }−\left(−\mathrm{1}\right)\mid<\epsilon\:\:\:{whenever}\:\:\:{x}<\delta=\frac{{ln}\left(\mathrm{2}\epsilon^{−\mathrm{1}} −\mathrm{1}\right)}{−\mathrm{2}{ln}\mathrm{3}}. \\ $$$${So}\:{indeed}\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{\mathrm{3}^{{x}} −\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }=−\mathrm{1}. \\ $$

Commented by sanusihammed last updated on 24/May/16

Thanks

$${Thanks} \\ $$

Commented by sanusihammed last updated on 24/May/16

i really appreciate

$${i}\:{really}\:{appreciate}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com