Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 57044 by mr W last updated on 29/Mar/19

Commented by mr W last updated on 29/Mar/19

reposted  Question from Tinkutara sir

$${reposted} \\ $$$${Question}\:{from}\:{Tinkutara}\:{sir} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 29/Mar/19

number of A type object=2n  numbser of B type object=2n  number of C type object=2n  so total object=6n  to be distributed between two person.  (1+x+x^2 +..+x^(2n) )(1+x+x^2 +...+x^(2n) )(1+x+x^2 +..x^(2n) )  ((1−x^(2n+1) )/(1−x))×((1−x^(2n+1) )/(1−x))×((1−x^(2n+1) )/(1−x))  =(((1−x^(2n+1) )^3 )/((1−x)^3 ))  =(1−x)^(−3) (1−x^(2n+1) )^3   required answer is the coefficient of   x^(3n)  in (1−x)^(−3) (1−x^(2n+1) )^3   =(1+3x+6x^2 +..+(((r+1)(r+2))/(1×2))x^r +..)(1−3x^(2n+1) +3x^(4n+2) −x^(6n+3) )  =(((3n+1)(3n+2))/(1×2))x^(3n) −3x^(2n+1) ×(((n−1+1)(n−1+2))/(1×2))x^(n−1)   =x^(3n) {((9n^2 +9n+2)/2)−(3/2)×(n^2 +n)}  =(x^(3n) /2)(9n^2 +9n+2−3n^2 −3n)  =(x^(3n) /2)(6n^2 +6n+2)  so answer is 3n^2 +3n+1

$${number}\:{of}\:{A}\:{type}\:{object}=\mathrm{2}{n} \\ $$$${numbser}\:{of}\:{B}\:{type}\:{object}=\mathrm{2}{n} \\ $$$${number}\:{of}\:{C}\:{ty}\boldsymbol{{p}}{e}\:{object}=\mathrm{2}{n} \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{total}}\:\boldsymbol{{object}}=\mathrm{6}\boldsymbol{{n}} \\ $$$$\boldsymbol{{to}}\:\boldsymbol{{be}}\:\boldsymbol{{distributed}}\:\boldsymbol{{between}}\:\boldsymbol{{two}}\:\boldsymbol{{person}}. \\ $$$$\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +..+{x}^{\mathrm{2}{n}} \right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +...+{x}^{\mathrm{2}{n}} \right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +..{x}^{\mathrm{2}{n}} \right) \\ $$$$\frac{\mathrm{1}−{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{1}−{x}}×\frac{\mathrm{1}−{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{1}−{x}}×\frac{\mathrm{1}−{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{1}−{x}} \\ $$$$=\frac{\left(\mathrm{1}−{x}^{\mathrm{2}{n}+\mathrm{1}} \right)^{\mathrm{3}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} } \\ $$$$=\left(\mathrm{1}−{x}\right)^{−\mathrm{3}} \left(\mathrm{1}−{x}^{\mathrm{2}{n}+\mathrm{1}} \right)^{\mathrm{3}} \\ $$$$\boldsymbol{{required}}\:\boldsymbol{{answer}}\:\boldsymbol{{is}}\:\boldsymbol{{the}}\:\boldsymbol{{coefficient}}\:\boldsymbol{{of}}\: \\ $$$$\boldsymbol{{x}}^{\mathrm{3}\boldsymbol{{n}}} \:\boldsymbol{{in}}\:\left(\mathrm{1}−\boldsymbol{{x}}\right)^{−\mathrm{3}} \left(\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}\boldsymbol{{n}}+\mathrm{1}} \right)^{\mathrm{3}} \\ $$$$=\left(\mathrm{1}+\mathrm{3}\boldsymbol{{x}}+\mathrm{6}\boldsymbol{{x}}^{\mathrm{2}} +..+\frac{\left(\boldsymbol{{r}}+\mathrm{1}\right)\left(\boldsymbol{{r}}+\mathrm{2}\right)}{\mathrm{1}×\mathrm{2}}{x}^{{r}} +..\right)\left(\mathrm{1}−\mathrm{3}{x}^{\mathrm{2}{n}+\mathrm{1}} +\mathrm{3}{x}^{\mathrm{4}{n}+\mathrm{2}} −{x}^{\mathrm{6}{n}+\mathrm{3}} \right) \\ $$$$=\frac{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)}{\mathrm{1}×\mathrm{2}}{x}^{\mathrm{3}{n}} −\mathrm{3}{x}^{\mathrm{2}{n}+\mathrm{1}} ×\frac{\left({n}−\mathrm{1}+\mathrm{1}\right)\left({n}−\mathrm{1}+\mathrm{2}\right)}{\mathrm{1}×\mathrm{2}}{x}^{{n}−\mathrm{1}} \\ $$$$={x}^{\mathrm{3}{n}} \left\{\frac{\mathrm{9}{n}^{\mathrm{2}} +\mathrm{9}{n}+\mathrm{2}}{\mathrm{2}}−\frac{\mathrm{3}}{\mathrm{2}}×\left({n}^{\mathrm{2}} +{n}\right)\right\} \\ $$$$=\frac{{x}^{\mathrm{3}{n}} }{\mathrm{2}}\left(\mathrm{9}{n}^{\mathrm{2}} +\mathrm{9}{n}+\mathrm{2}−\mathrm{3}{n}^{\mathrm{2}} −\mathrm{3}{n}\right) \\ $$$$=\frac{{x}^{\mathrm{3}{n}} }{\mathrm{2}}\left(\mathrm{6}{n}^{\mathrm{2}} +\mathrm{6}{n}+\mathrm{2}\right) \\ $$$${so}\:{answer}\:{is}\:\mathrm{3}{n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mr W last updated on 30/Mar/19

thanks sir! nice proof!    (((1−x^(2n+1) )^3 )/((1−x)^3 ))  =(1−3x^(2n+1) +3x^(4n+2) −x^(6n+3) )Σ_(k=0) ^∞ C_k ^(2+k) x^k   x^(3n) : C_(3n) ^(2+3n) −3C_(n−1) ^(n+1) =C_2 ^(3n+2) −3C_2 ^(n+1)   =(((3n+2)(3n+1)−3(n+1)n)/2)  =((6n^2 +6n+2)/2)  =3n^2 +3n+1

$${thanks}\:{sir}!\:{nice}\:{proof}! \\ $$$$ \\ $$$$\frac{\left(\mathrm{1}−{x}^{\mathrm{2}{n}+\mathrm{1}} \right)^{\mathrm{3}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} } \\ $$$$=\left(\mathrm{1}−\mathrm{3}{x}^{\mathrm{2}{n}+\mathrm{1}} +\mathrm{3}{x}^{\mathrm{4}{n}+\mathrm{2}} −{x}^{\mathrm{6}{n}+\mathrm{3}} \right)\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{{k}} ^{\mathrm{2}+{k}} {x}^{{k}} \\ $$$${x}^{\mathrm{3}{n}} :\:{C}_{\mathrm{3}{n}} ^{\mathrm{2}+\mathrm{3}{n}} −\mathrm{3}{C}_{{n}−\mathrm{1}} ^{{n}+\mathrm{1}} ={C}_{\mathrm{2}} ^{\mathrm{3}{n}+\mathrm{2}} −\mathrm{3}{C}_{\mathrm{2}} ^{{n}+\mathrm{1}} \\ $$$$=\frac{\left(\mathrm{3}{n}+\mathrm{2}\right)\left(\mathrm{3}{n}+\mathrm{1}\right)−\mathrm{3}\left({n}+\mathrm{1}\right){n}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{6}{n}^{\mathrm{2}} +\mathrm{6}{n}+\mathrm{2}}{\mathrm{2}} \\ $$$$=\mathrm{3}{n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{1} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 30/Mar/19

this platform bind us by invisble bond and boost  us to quench our thirst of quest to find the truth...  the solution...

$${this}\:{platform}\:{bind}\:{us}\:{by}\:{invisble}\:{bond}\:{and}\:{boost} \\ $$$${us}\:{to}\:{quench}\:{our}\:{thirst}\:{of}\:{quest}\:{to}\:{find}\:{the}\:{truth}... \\ $$$${the}\:{solution}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com