Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 5722 by Rasheed Soomro last updated on 25/May/16

Prove by mathematical induction  that tbe following formula is correct  for all positive integers n:   ((2),(2) ) + ((3),(2) ) + ((4),(2) ) +...+ (((n+1)),((   2)) ) = (((n+2)),((   3)) )

$$\mathrm{Prove}\:\mathrm{by}\:\boldsymbol{\mathrm{mathematical}}\:\boldsymbol{\mathrm{induction}} \\ $$$$\mathrm{that}\:\mathrm{tbe}\:\mathrm{following}\:\mathrm{formula}\:\mathrm{is}\:\mathrm{correct} \\ $$$$\mathrm{for}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{n}: \\ $$$$\begin{pmatrix}{\mathrm{2}}\\{\mathrm{2}}\end{pmatrix}\:+\begin{pmatrix}{\mathrm{3}}\\{\mathrm{2}}\end{pmatrix}\:+\begin{pmatrix}{\mathrm{4}}\\{\mathrm{2}}\end{pmatrix}\:+...+\begin{pmatrix}{\mathrm{n}+\mathrm{1}}\\{\:\:\:\mathrm{2}}\end{pmatrix}\:=\begin{pmatrix}{\mathrm{n}+\mathrm{2}}\\{\:\:\:\mathrm{3}}\end{pmatrix} \\ $$

Commented by Yozzii last updated on 25/May/16

Let p(n): Σ_(i=1) ^n  (((i+1)),(2) )= (((n+2)),(3) )  (n∈N)    For n=1  lhs= (((1+1)),(2) )= ((2),(2) )=1  rhs= (((1+2)),(3) )= ((3),(3) )=1  lhs=rhs⇒p(n) true for n=1.    Assume p(n) is true for n=k  ⇒Σ_(i=1) ^k  (((i+1)),(2) )= (((k+2)),(3) )     For n=k+1  ⇒Σ_(i=1) ^(k+1)  (((i+1)),(2) )=Σ_(i=1) ^k  (((i+1)),(2) )+ (((k+2)),(2) )                           = (((k+2)),(3) )+ (((k+2)),(2) )                           =(k+2)!((1/((k−1)!3!))+(1/(k(k−1)!2!)))                           =(((k+2)!)/((k−1)!2!))((1/3)+(1/k))                           =(((k+2)!(k+3))/(k!3!))                           =(((k+3)!)/((k+3−3)!3!))  Σ_(i=1) ^(k+1)  (((i+1)),(2) )= (((k+3)),(3) )  ∴ p(k)⇒p(k+1).  ∴p(n) is true ∀n∈N by P.M.I.

$${Let}\:{p}\left({n}\right):\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\begin{pmatrix}{{i}+\mathrm{1}}\\{\mathrm{2}}\end{pmatrix}=\begin{pmatrix}{{n}+\mathrm{2}}\\{\mathrm{3}}\end{pmatrix}\:\:\left({n}\in\mathbb{N}\right) \\ $$$$ \\ $$$${For}\:{n}=\mathrm{1} \\ $$$${lhs}=\begin{pmatrix}{\mathrm{1}+\mathrm{1}}\\{\mathrm{2}}\end{pmatrix}=\begin{pmatrix}{\mathrm{2}}\\{\mathrm{2}}\end{pmatrix}=\mathrm{1} \\ $$$${rhs}=\begin{pmatrix}{\mathrm{1}+\mathrm{2}}\\{\mathrm{3}}\end{pmatrix}=\begin{pmatrix}{\mathrm{3}}\\{\mathrm{3}}\end{pmatrix}=\mathrm{1} \\ $$$${lhs}={rhs}\Rightarrow{p}\left({n}\right)\:{true}\:{for}\:{n}=\mathrm{1}. \\ $$$$ \\ $$$${Assume}\:{p}\left({n}\right)\:{is}\:{true}\:{for}\:{n}={k} \\ $$$$\Rightarrow\underset{{i}=\mathrm{1}} {\overset{{k}} {\sum}}\begin{pmatrix}{{i}+\mathrm{1}}\\{\mathrm{2}}\end{pmatrix}=\begin{pmatrix}{{k}+\mathrm{2}}\\{\mathrm{3}}\end{pmatrix}\: \\ $$$$ \\ $$$${For}\:{n}={k}+\mathrm{1} \\ $$$$\Rightarrow\underset{{i}=\mathrm{1}} {\overset{{k}+\mathrm{1}} {\sum}}\begin{pmatrix}{{i}+\mathrm{1}}\\{\mathrm{2}}\end{pmatrix}=\underset{{i}=\mathrm{1}} {\overset{{k}} {\sum}}\begin{pmatrix}{{i}+\mathrm{1}}\\{\mathrm{2}}\end{pmatrix}+\begin{pmatrix}{{k}+\mathrm{2}}\\{\mathrm{2}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\begin{pmatrix}{{k}+\mathrm{2}}\\{\mathrm{3}}\end{pmatrix}+\begin{pmatrix}{{k}+\mathrm{2}}\\{\mathrm{2}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({k}+\mathrm{2}\right)!\left(\frac{\mathrm{1}}{\left({k}−\mathrm{1}\right)!\mathrm{3}!}+\frac{\mathrm{1}}{{k}\left({k}−\mathrm{1}\right)!\mathrm{2}!}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left({k}+\mathrm{2}\right)!}{\left({k}−\mathrm{1}\right)!\mathrm{2}!}\left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{{k}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left({k}+\mathrm{2}\right)!\left({k}+\mathrm{3}\right)}{{k}!\mathrm{3}!} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left({k}+\mathrm{3}\right)!}{\left({k}+\mathrm{3}−\mathrm{3}\right)!\mathrm{3}!} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{k}+\mathrm{1}} {\sum}}\begin{pmatrix}{{i}+\mathrm{1}}\\{\mathrm{2}}\end{pmatrix}=\begin{pmatrix}{{k}+\mathrm{3}}\\{\mathrm{3}}\end{pmatrix} \\ $$$$\therefore\:{p}\left({k}\right)\Rightarrow{p}\left({k}+\mathrm{1}\right). \\ $$$$\therefore{p}\left({n}\right)\:{is}\:{true}\:\forall{n}\in\mathbb{N}\:{by}\:{P}.{M}.{I}. \\ $$

Commented by Rasheed Soomro last updated on 25/May/16

Th^a nkS!

$$\mathcal{T}{h}^{{a}} {nk}\mathcal{S}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com