All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 57224 by maxmathsup by imad last updated on 31/Mar/19
findthevalueof∫013t2−5t+1(t+1)(t+2)(2t+3)dt
Commented by maxmathsup by imad last updated on 01/Apr/19
letdecomposeF(t)=3t2−5t+1(t+1)(t+2)(2t+3)withI=∫01F(t)dtF(t)=at+1+bt+2+c2t+3a=limt→−1(t+1)F(t)=91=9b=limt→−2(t+2)F(t)=12+10+1(−1)(−1)=23c=limt→−32(2t+3)F(t)=394−5(−32)+1(−32+1)(−32+2)=274+304+1(−12)(12)=614(−4)=−61⇒F(t)=9t+1+23t+2−612t+3⇒∫01F(t)dt=[9ln∣t+1∣+23ln∣t+2∣−612ln∣2t+3∣]01=9ln(2)+23ln(3)−612ln(5)−23ln(2)+612ln(3)I=−14ln(2)+1072ln(3)−612ln(5).
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Apr/19
3t2−5t+1(t+1)(t+2)(2t+3)=at+1+bt+2+c2t+33t2−5t+1=a(t+2)(2t+3)+b(t+1)(2t+3)+c(t+1)(t+2)putt+1=03+5+1=a(−1+2)(−2+3)a=9putt+2=03(4)+10+1=b(−2+1)(−4+3)b=23put2t+3=03(−32)2−5(−32)+1=c(−32+1)(−32+2)3(94)+152+1=c(−12)(12)27+304+1=−14×c614=−c4→c=−61∫01at+1dt+∫01bt+2dt+∫01c2t+3dt9∫01dtt+1+23∫01dtt+2−61∫01dtt+32=∣9ln(t+1)+23ln(t+2)−61ln(t+32)∣01=[9{ln(2)−ln(1)}+23{ln(3)−ln2}−61{ln(52)−ln(32)}]=9ln2+23ln(32)−61ln(53)=ln29+ln(32)23−ln(53)61ln{29×323223×361561}=ln{384214×561}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com