Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 57224 by maxmathsup by imad last updated on 31/Mar/19

find the value of ∫_0 ^1   ((3t^2 −5t +1)/((t+1)(t+2)(2t+3)))dt

findthevalueof013t25t+1(t+1)(t+2)(2t+3)dt

Commented by maxmathsup by imad last updated on 01/Apr/19

let decompose F(t)=((3t^2 −5t +1)/((t+1)(t+2)(2t+3)))  with I=∫_0 ^1  F(t)dt  F(t)=(a/(t+1)) +(b/(t+2)) +(c/(2t+3))  a =lim_(t→−1) (t+1)F(t) =(9/1) =9  b =lim_(t→−2) (t+2)F(t) =((12+10+1)/((−1)(−1))) =23  c =lim_(t→−(3/2))   (2t+3)F(t)=((3(9/4)−5(−(3/2))+1)/((−(3/2)+1)(−(3/2)+2))) =((((27)/4) +((30)/4) +1)/((−(1/2))((1/2)))) =((61)/4)(−4)=−61 ⇒  F(t)=(9/(t+1)) +((23)/(t+2)) −((61)/(2t+3)) ⇒∫_0 ^1 F(t)dt =[9ln∣t+1∣+23ln∣t+2∣−((61)/2)ln∣2t+3∣]_0 ^1   =9ln(2)+23ln(3)−((61)/2)ln(5) −23ln(2)+((61)/2)ln(3)  I=−14ln(2) +((107)/2)ln(3)−((61)/2)ln(5) .

letdecomposeF(t)=3t25t+1(t+1)(t+2)(2t+3)withI=01F(t)dtF(t)=at+1+bt+2+c2t+3a=limt1(t+1)F(t)=91=9b=limt2(t+2)F(t)=12+10+1(1)(1)=23c=limt32(2t+3)F(t)=3945(32)+1(32+1)(32+2)=274+304+1(12)(12)=614(4)=61F(t)=9t+1+23t+2612t+301F(t)dt=[9lnt+1+23lnt+2612ln2t+3]01=9ln(2)+23ln(3)612ln(5)23ln(2)+612ln(3)I=14ln(2)+1072ln(3)612ln(5).

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Apr/19

((3t^2 −5t+1)/((t+1)(t+2)(2t+3)))=(a/(t+1))+(b/(t+2))+(c/(2t+3))  3t^2 −5t+1=a(t+2)(2t+3)+b(t+1)(2t+3)+c(t+1)(t+2)  put t+1=0  3+5+1=a(−1+2)(−2+3)  a=9  put t+2=0  3(4)+10+1=b(−2+1)(−4+3)  b=23  put 2t+3=0  3(((−3)/2))^2 −5(((−3)/2))+1=c(((−3)/2)+1)(((−3)/2)+2)  3((9/4))+((15)/2)+1=c(((−1)/2))((1/2))  ((27+30)/4) +1=((−1)/4)×c  ((61)/4)=((−c)/4)→c=−61  ∫_0 ^1 (a/(t+1))dt+∫_0 ^1 (b/(t+2))dt+∫_0 ^1 (c/(2t+3))dt  9∫_0 ^1 (dt/(t+1))+23∫_0 ^1 (dt/(t+2))−61∫_0 ^1 (dt/(t+(3/2)))  =∣9ln(t+1)+23ln(t+2)−61ln(t+(3/2))∣_0 ^1   =[9{ln(2)−ln(1)}+23{ln(3)−ln2}−61{ln((5/2))−ln((3/2))}]  =9ln2+23ln((3/2))−61ln((5/3))  =ln2^9 +ln((3/2))^(23) −ln((5/3))^(61)   ln{2^9 ×(3^(23) /2^(23) )×(3^(61) /5^(61) )}  =ln{(3^(84) /(2^(14) ×5^(61) ))}

3t25t+1(t+1)(t+2)(2t+3)=at+1+bt+2+c2t+33t25t+1=a(t+2)(2t+3)+b(t+1)(2t+3)+c(t+1)(t+2)putt+1=03+5+1=a(1+2)(2+3)a=9putt+2=03(4)+10+1=b(2+1)(4+3)b=23put2t+3=03(32)25(32)+1=c(32+1)(32+2)3(94)+152+1=c(12)(12)27+304+1=14×c614=c4c=6101at+1dt+01bt+2dt+01c2t+3dt901dtt+1+2301dtt+26101dtt+32=∣9ln(t+1)+23ln(t+2)61ln(t+32)01=[9{ln(2)ln(1)}+23{ln(3)ln2}61{ln(52)ln(32)}]=9ln2+23ln(32)61ln(53)=ln29+ln(32)23ln(53)61ln{29×323223×361561}=ln{384214×561}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com