Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 57225 by maxmathsup by imad last updated on 31/Mar/19

1)calculate f(a) =∫_0 ^a    ((2x−1)/((x^2  −x+3)(x^2  +1)))dx  1) calculate f(1)and f(2)

1)calculatef(a)=0a2x1(x2x+3)(x2+1)dx1)calculatef(1)andf(2)

Commented by maxmathsup by imad last updated on 04/Apr/19

let decompose F(x) =((2x−1)/((x^2 −x+3)(x^2  +1))) ⇒  F(x) =((ax+b)/(x^2 −x+3)) +((cx+d)/(x^2  +1)) ⇒(ax+b)(x^2  +1)+(cx+d)(x^2 −x+3) =2x−1 ⇒  ax^3  +ax +bx^2  +b +cx^3  −cx^2  +3cx +dx^2  −dx +3d =2x−1 ⇒  (a+c)x^3  +(b−c +d)x^2  +(a +3c−d)x +b +3d =2x−1 ⇒  a+c =0 and b−c+d =0 and a+3c−d =2 and 3d=−1 ⇒ d =−(1/3)  c=−a ⇒a−3a −d =2 ⇒−2a =d+2 =−(1/3) +2 =(5/3) ⇒a =−(5/6)  c =(5/6)  ,b =c−d =(5/6) +(1/3) =(7/6) ⇒  F(x) =((−(5/6)x +(7/6))/(x^2 −x+3)) +(((5/6)x−(2/6))/(x^2  +1)) =−(1/6) ((x−7)/(x^2 −x+3)) +(1/6) ((5x−2)/(x^2  +1)) ⇒  ∫ F(x)dx =−(1/(12)) ∫ ((2x−14)/(x^2 −x +3))dx  +(5/(12)) ∫ ((2x)/(x^2  +1)) −(1/3) ∫ (dx/(x^2  +1))  =−(1/(12))ln(x^2 −x +3) +((13)/(12)) ∫   (dx/(x^2 −x +3)) +(5/(12))ln(x^2  +1)−(1/3) arctan(x) +c  but ∫    (dx/(x^2 −x+3)) =∫   (dx/(x^2 −2(x/2) +(1/4)+3−(1/4))) =∫   (dx/((x−(1/2))^2  +((11)/4)))  =_(x−(1/2)=((√(11))/2)u)    (4/(11))∫  (1/(1+u^2 )) ((√(11))/2) du =(2/(√(11))) arctan(((2x−1)/(√(11)))) ⇒  ∫ F(x)dx =−(1/(12))ln(x^2 −x+3) +((13)/(6(√(11)))) arctan(((2x−1)/(√(11)))) +(5/(12))ln(x^2  +1)−(1/3)arctan(x)+c   ⇒f(a) =∫_0 ^a  F(x)dx =[−(1/(12))ln(x^2 −x+3)+((13)/(6(√(11)))) arctan(((2x−1)/(√(11))))+(5/(12))ln(x^2  +1)−(1/3) arctan(x)]_0 ^a   =−(1/(12))ln(a^2 −a +3)+((13)/(6(√(11)))) arctan(((2a−1)/(√(11))))+(5/(12))ln(a^2  +1)−(1/3) arctan(a)  +(1/(12))ln(3) +((13)/(6(√(11)))) arctan((1/(√(11))))

letdecomposeF(x)=2x1(x2x+3)(x2+1)F(x)=ax+bx2x+3+cx+dx2+1(ax+b)(x2+1)+(cx+d)(x2x+3)=2x1ax3+ax+bx2+b+cx3cx2+3cx+dx2dx+3d=2x1(a+c)x3+(bc+d)x2+(a+3cd)x+b+3d=2x1a+c=0andbc+d=0anda+3cd=2and3d=1d=13c=aa3ad=22a=d+2=13+2=53a=56c=56,b=cd=56+13=76F(x)=56x+76x2x+3+56x26x2+1=16x7x2x+3+165x2x2+1F(x)dx=1122x14x2x+3dx+5122xx2+113dxx2+1=112ln(x2x+3)+1312dxx2x+3+512ln(x2+1)13arctan(x)+cbutdxx2x+3=dxx22x2+14+314=dx(x12)2+114=x12=112u41111+u2112du=211arctan(2x111)F(x)dx=112ln(x2x+3)+13611arctan(2x111)+512ln(x2+1)13arctan(x)+cf(a)=0aF(x)dx=[112ln(x2x+3)+13611arctan(2x111)+512ln(x2+1)13arctan(x)]0a=112ln(a2a+3)+13611arctan(2a111)+512ln(a2+1)13arctan(a)+112ln(3)+13611arctan(111)

Commented by maxmathsup by imad last updated on 05/Apr/19

2) f(1) =−(1/(12))ln(3)+((13)/(6(√(11)))) arctan((1/(√(11)))) +(5/(12))ln(2)−(π/(12)) +(1/(12))ln(3)+((13)/(6(√(11)))) arctan((1/(√(11))))  f(1) =((13)/(3(√(11)))) arctan((1/(√(11)))) +(5/(12))ln(2)−(π/(12)) .

2)f(1)=112ln(3)+13611arctan(111)+512ln(2)π12+112ln(3)+13611arctan(111)f(1)=13311arctan(111)+512ln(2)π12.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com