Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 57236 by maxmathsup by imad last updated on 31/Mar/19

clalculate A_n = ∫_0 ^1  t^(2n) (1−t)^n dt   with n integr natural .

$${clalculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{n}} \left(\mathrm{1}−{t}\right)^{{n}} {dt}\:\:\:{with}\:{n}\:{integr}\:{natural}\:. \\ $$

Commented by maxmathsup by imad last updated on 04/Apr/19

let find A_(n,p)   =∫_0 ^1  t^n (1−t)^p dt  by parts u^′ =t^n  and v=(1−t)^p   A_(n,p)  =[(1/(n+1))t^(n+1) (1−t)^p ]_0 ^1  −∫_0 ^1  (1/(n+1))t^(n+1)  (−p)(1−t)^(p−1) dt  =(p/(n+1)) ∫_0 ^1  t^(n+1) (1−t)^(p−1)  =(p/(n+1)) A_(n+1,p−1)  ⇒  A_(n,p) =((p(p−1))/((n+1)(n+2))) A_(n+2,p−2) =((p(p−1)...(p−k+1))/((n+1)(n+2)....(n+k)))A_(n+k,p−k) .=_(k=p) ((p!)/((n+1)(n+2)....(n+p)))A_(n+p,o)   A_(n+p,0) =∫_0 ^1 t^(n+p) dt =(1/(n+p+1)) ⇒A_(n,p)  =((p!)/((n+1)(n+2)...(n+p+1))) ⇒  A_(n,p) =((p!)/((n+p+1)!)) ×n! =((n! .p!)/((n+p+1)!)) ⇒ A_n =A_(2n,n)  =(((2n)!(n!))/((3n+1)!))

$${let}\:{find}\:{A}_{{n},{p}} \:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{n}} \left(\mathrm{1}−{t}\right)^{{p}} {dt}\:\:{by}\:{parts}\:{u}^{'} ={t}^{{n}} \:{and}\:{v}=\left(\mathrm{1}−{t}\right)^{{p}} \\ $$$${A}_{{n},{p}} \:=\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}{t}^{{n}+\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{p}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{{n}+\mathrm{1}}{t}^{{n}+\mathrm{1}} \:\left(−{p}\right)\left(\mathrm{1}−{t}\right)^{{p}−\mathrm{1}} {dt} \\ $$$$=\frac{{p}}{{n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{n}+\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{p}−\mathrm{1}} \:=\frac{{p}}{{n}+\mathrm{1}}\:{A}_{{n}+\mathrm{1},{p}−\mathrm{1}} \:\Rightarrow \\ $$$${A}_{{n},{p}} =\frac{{p}\left({p}−\mathrm{1}\right)}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\:{A}_{{n}+\mathrm{2},{p}−\mathrm{2}} =\frac{{p}\left({p}−\mathrm{1}\right)...\left({p}−{k}+\mathrm{1}\right)}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)....\left({n}+{k}\right)}{A}_{{n}+{k},{p}−{k}} .=_{{k}={p}} \frac{{p}!}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)....\left({n}+{p}\right)}{A}_{{n}+{p},{o}} \\ $$$${A}_{{n}+{p},\mathrm{0}} =\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{n}+{p}} {dt}\:=\frac{\mathrm{1}}{{n}+{p}+\mathrm{1}}\:\Rightarrow{A}_{{n},{p}} \:=\frac{{p}!}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)...\left({n}+{p}+\mathrm{1}\right)}\:\Rightarrow \\ $$$${A}_{{n},{p}} =\frac{{p}!}{\left({n}+{p}+\mathrm{1}\right)!}\:×{n}!\:=\frac{{n}!\:.{p}!}{\left({n}+{p}+\mathrm{1}\right)!}\:\Rightarrow\:{A}_{{n}} ={A}_{\mathrm{2}{n},{n}} \:=\frac{\left(\mathrm{2}{n}\right)!\left({n}!\right)}{\left(\mathrm{3}{n}+\mathrm{1}\right)!} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Apr/19

∫_0 ^1 t^(2n+1−1) (1−t)^(n+1−1) =((⌈(2n+1)⌈(n+1))/(⌈(2n+1+n+1)))  beta function ∫_0 ^1 x^(m−1) (1−x)^(n−1) dx=((⌈(m)⌈n))/(⌈(m+n)))

$$\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{2}{n}+\mathrm{1}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{n}+\mathrm{1}−\mathrm{1}} =\frac{\lceil\left(\mathrm{2}{n}+\mathrm{1}\right)\lceil\left({n}+\mathrm{1}\right)}{\lceil\left(\mathrm{2}{n}+\mathrm{1}+{n}+\mathrm{1}\right)} \\ $$$${beta}\:{function}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{m}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{n}−\mathrm{1}} {dx}=\frac{\left.\lceil\left({m}\right)\lceil{n}\right)}{\lceil\left({m}+{n}\right)} \\ $$

Commented by maxmathsup by imad last updated on 04/Apr/19

sir Tanmay look that Γ(2n+1)=(2n)!   ,Γ(n+1)=n! ,Γ(3n+2)=(3n+1)!  ⇒A_n =(((2n)!(n!))/((3n+1)!))  .

$${sir}\:{Tanmay}\:{look}\:{that}\:\Gamma\left(\mathrm{2}{n}+\mathrm{1}\right)=\left(\mathrm{2}{n}\right)!\:\:\:,\Gamma\left({n}+\mathrm{1}\right)={n}!\:,\Gamma\left(\mathrm{3}{n}+\mathrm{2}\right)=\left(\mathrm{3}{n}+\mathrm{1}\right)! \\ $$$$\Rightarrow{A}_{{n}} =\frac{\left(\mathrm{2}{n}\right)!\left({n}!\right)}{\left(\mathrm{3}{n}+\mathrm{1}\right)!}\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com