Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 57323 by turbo msup by abdo last updated on 02/Apr/19

calculate ∫∫_D   ((x+y)/(3+(√(x^2  +y^2 ))))dxdy  with D={(x,y)∈R^2 /x^2  +y^2 ≤2  and x≥0 ,y≥0}

$${calculate}\:\int\int_{{D}} \:\:\frac{{x}+{y}}{\mathrm{3}+\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}{dxdy} \\ $$$${with}\:{D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \leqslant\mathrm{2}\right. \\ $$$$\left.{and}\:{x}\geqslant\mathrm{0}\:,{y}\geqslant\mathrm{0}\right\} \\ $$

Commented by maxmathsup by imad last updated on 03/Apr/19

let use  the diffeomorphism  x=rcosθ and y=rsinθ  we have x^2  +y^2  ≤2 ⇒  r^2  ≤2 ⇒0≤r≤(√2)   also x≥0 and y ≥0 ⇒0≤θ ≤(π/2) ⇒  ∫∫_D   ((x+y)/(3+(√(x^2  +y^2 ))))dxdy =∫∫_(0≤r≤(√2) and 0≤θ≤(π/2))   ((r(cosθ +sinθ))/(3+r)) rdrdθ  =∫_0 ^(√2) (r^2 /(3+r))dr .∫_0 ^(π/2)  (cosθ +sinθ)dθ  but  ∫_0 ^(√2) (r^2 /(r+3)) dr =∫_0 ^(√2)   ((r^2 −9 +9)/(r+3))dr =∫_0 ^(√2) (r−3)dr +9 ∫_1 ^(√2)  (dr/(r+3))  =[(r^2 /2)−3r]_0 ^(√2)  +9[ln∣r+3∣]_1 ^(√2)   =1−3(√2) +9{ ln(3+(√2))−2ln(2)}  =1−3ln(2)+9ln(3+(√2))−18ln(2) =1+9ln(3+(√2))−21ln(2)  ∫_0 ^(π/2)  (cosθ +sinθ)dθ =[sinθ −cosθ]_0 ^(π/2)  =1−(−1) =2 ⇒  ∫∫_D ((x+y)/(3+(√(x^2  +y^2 ))))dxdy =2 +18ln(3+(√2))−42ln(2).

$${let}\:{use}\:\:{the}\:{diffeomorphism}\:\:{x}={rcos}\theta\:{and}\:{y}={rsin}\theta\:\:{we}\:{have}\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:\leqslant\mathrm{2}\:\Rightarrow \\ $$$${r}^{\mathrm{2}} \:\leqslant\mathrm{2}\:\Rightarrow\mathrm{0}\leqslant{r}\leqslant\sqrt{\mathrm{2}}\:\:\:{also}\:{x}\geqslant\mathrm{0}\:{and}\:{y}\:\geqslant\mathrm{0}\:\Rightarrow\mathrm{0}\leqslant\theta\:\leqslant\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$$\int\int_{{D}} \:\:\frac{{x}+{y}}{\mathrm{3}+\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}{dxdy}\:=\int\int_{\mathrm{0}\leqslant{r}\leqslant\sqrt{\mathrm{2}}\:{and}\:\mathrm{0}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}}} \:\:\frac{{r}\left({cos}\theta\:+{sin}\theta\right)}{\mathrm{3}+{r}}\:{rdrd}\theta \\ $$$$=\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \frac{{r}^{\mathrm{2}} }{\mathrm{3}+{r}}{dr}\:.\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({cos}\theta\:+{sin}\theta\right){d}\theta\:\:{but} \\ $$$$\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \frac{{r}^{\mathrm{2}} }{{r}+\mathrm{3}}\:{dr}\:=\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:\:\frac{{r}^{\mathrm{2}} −\mathrm{9}\:+\mathrm{9}}{{r}+\mathrm{3}}{dr}\:=\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \left({r}−\mathrm{3}\right){dr}\:+\mathrm{9}\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \:\frac{{dr}}{{r}+\mathrm{3}} \\ $$$$=\left[\frac{{r}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{3}{r}\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:+\mathrm{9}\left[{ln}\mid{r}+\mathrm{3}\mid\right]_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \:\:=\mathrm{1}−\mathrm{3}\sqrt{\mathrm{2}}\:+\mathrm{9}\left\{\:{ln}\left(\mathrm{3}+\sqrt{\mathrm{2}}\right)−\mathrm{2}{ln}\left(\mathrm{2}\right)\right\} \\ $$$$=\mathrm{1}−\mathrm{3}{ln}\left(\mathrm{2}\right)+\mathrm{9}{ln}\left(\mathrm{3}+\sqrt{\mathrm{2}}\right)−\mathrm{18}{ln}\left(\mathrm{2}\right)\:=\mathrm{1}+\mathrm{9}{ln}\left(\mathrm{3}+\sqrt{\mathrm{2}}\right)−\mathrm{21}{ln}\left(\mathrm{2}\right) \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({cos}\theta\:+{sin}\theta\right){d}\theta\:=\left[{sin}\theta\:−{cos}\theta\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\mathrm{1}−\left(−\mathrm{1}\right)\:=\mathrm{2}\:\Rightarrow \\ $$$$\int\int_{{D}} \frac{{x}+{y}}{\mathrm{3}+\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}{dxdy}\:=\mathrm{2}\:+\mathrm{18}{ln}\left(\mathrm{3}+\sqrt{\mathrm{2}}\right)−\mathrm{42}{ln}\left(\mathrm{2}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com