All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 57323 by turbo msup by abdo last updated on 02/Apr/19
calculate∫∫Dx+y3+x2+y2dxdywithD={(x,y)∈R2/x2+y2⩽2andx⩾0,y⩾0}
Commented by maxmathsup by imad last updated on 03/Apr/19
letusethediffeomorphismx=rcosθandy=rsinθwehavex2+y2⩽2⇒r2⩽2⇒0⩽r⩽2alsox⩾0andy⩾0⇒0⩽θ⩽π2⇒∫∫Dx+y3+x2+y2dxdy=∫∫0⩽r⩽2and0⩽θ⩽π2r(cosθ+sinθ)3+rrdrdθ=∫02r23+rdr.∫0π2(cosθ+sinθ)dθbut∫02r2r+3dr=∫02r2−9+9r+3dr=∫02(r−3)dr+9∫12drr+3=[r22−3r]02+9[ln∣r+3∣]12=1−32+9{ln(3+2)−2ln(2)}=1−3ln(2)+9ln(3+2)−18ln(2)=1+9ln(3+2)−21ln(2)∫0π2(cosθ+sinθ)dθ=[sinθ−cosθ]0π2=1−(−1)=2⇒∫∫Dx+y3+x2+y2dxdy=2+18ln(3+2)−42ln(2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com