Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 57363 by Tawa1 last updated on 03/Apr/19

Commented by Tawa1 last updated on 03/Apr/19

Please help. my problem is from  ((2^m  . m(m + 1)(m + 2) .... (2m − 1))/(1.3.5. ....... (2m − 1)))  now why did they multiply Numerator and denominator by  (m − 1)!. 2m  to get ...                                                               ((2^m  . m(m + 1)(m + 2) .... (2m − 1) × (m − 1)!. 2m)/([1.3.5. ....... (2m − 1)] ....... . (m − 1)! . 2m ))  And suddenly becomes                                          ((2^m  . (2m)!)/([1.3.5. ....... (2m − 1)] ....... . (m − 1)! . 2m ))  And later.                                           ((2^m  . 2^m   m![1.3.5 . .... (2m − 1)])/([1.3.5. ....... (2m − 1)] ....... . (m − 1)! . 2m ))  So, i don′t understand all the steps jump.    I don′t want to cram, i want to understand the steps because  of exam.

$$\mathrm{Please}\:\mathrm{help}.\:\mathrm{my}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{from}\:\:\frac{\mathrm{2}^{\mathrm{m}} \:.\:\mathrm{m}\left(\mathrm{m}\:+\:\mathrm{1}\right)\left(\mathrm{m}\:+\:\mathrm{2}\right)\:....\:\left(\mathrm{2m}\:−\:\mathrm{1}\right)}{\mathrm{1}.\mathrm{3}.\mathrm{5}.\:.......\:\left(\mathrm{2m}\:−\:\mathrm{1}\right)} \\ $$$$\mathrm{now}\:\mathrm{why}\:\mathrm{did}\:\mathrm{they}\:\mathrm{multiply}\:\mathrm{Numerator}\:\mathrm{and}\:\mathrm{denominator}\:\mathrm{by} \\ $$$$\left(\mathrm{m}\:−\:\mathrm{1}\right)!.\:\mathrm{2m}\:\:\mathrm{to}\:\mathrm{get}\:... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{2}^{\mathrm{m}} \:.\:\mathrm{m}\left(\mathrm{m}\:+\:\mathrm{1}\right)\left(\mathrm{m}\:+\:\mathrm{2}\right)\:....\:\left(\mathrm{2m}\:−\:\mathrm{1}\right)\:×\:\left(\mathrm{m}\:−\:\mathrm{1}\right)!.\:\mathrm{2m}}{\left[\mathrm{1}.\mathrm{3}.\mathrm{5}.\:.......\:\left(\mathrm{2m}\:−\:\mathrm{1}\right)\right]\:.......\:.\:\left(\mathrm{m}\:−\:\mathrm{1}\right)!\:.\:\mathrm{2m}\:} \\ $$$$\mathrm{And}\:\mathrm{suddenly}\:\mathrm{becomes} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{2}^{\mathrm{m}} \:.\:\left(\mathrm{2m}\right)!}{\left[\mathrm{1}.\mathrm{3}.\mathrm{5}.\:.......\:\left(\mathrm{2m}\:−\:\mathrm{1}\right)\right]\:.......\:.\:\left(\mathrm{m}\:−\:\mathrm{1}\right)!\:.\:\mathrm{2m}\:} \\ $$$$\mathrm{And}\:\mathrm{later}.\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{2}^{\mathrm{m}} \:.\:\mathrm{2}^{\mathrm{m}} \:\:\mathrm{m}!\left[\mathrm{1}.\mathrm{3}.\mathrm{5}\:.\:....\:\left(\mathrm{2m}\:−\:\mathrm{1}\right)\right]}{\left[\mathrm{1}.\mathrm{3}.\mathrm{5}.\:.......\:\left(\mathrm{2m}\:−\:\mathrm{1}\right)\right]\:.......\:.\:\left(\mathrm{m}\:−\:\mathrm{1}\right)!\:.\:\mathrm{2m}\:} \\ $$$$\mathrm{So},\:\mathrm{i}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand}\:\mathrm{all}\:\mathrm{the}\:\mathrm{steps}\:\mathrm{jump}. \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{want}\:\mathrm{to}\:\mathrm{cram},\:\mathrm{i}\:\mathrm{want}\:\mathrm{to}\:\mathrm{understand}\:\mathrm{the}\:\mathrm{steps}\:\mathrm{because} \\ $$$$\mathrm{of}\:\mathrm{exam}.\: \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 03/Apr/19

look at the D_r =1.3.5....(n−1)  D_r =(n−1)...5.3.1  ←look even number are missing  so D_r =[(n−1)(n−2)(n−3)(n−4)..6.5.4.3.2.1]×(1/((n−2)(n−4)..6.4.2))  here i have inserted even numbers and devided  by same even numbers to keep the value of  D_r =fixed  D_r =(1/((n−2)(n−4)...6.4.2))×(n−1)(n−2)(n−3)..6.5.4.3.2.1  D_r =(((n−1)!)/((n−2)(n−4)..6.4.2))  now  (N_r /D_r )=((n(n+2)(n+4)..(2n−2))/(((n−1)!)/((n−2)(n−4)..6.4.2)))  (N_r /D_r )=(((2n−2)(2n−4)...(n+4)(n+2)n×(n−2)(n−4)(n−6)..6.4.2)/((n−1)∙))    let n=2k    (N_r /D_r )=(((4k−2)(4k−4)..(2k+4)(2k+2)(2k)(2k−2)(2k−4)(2k−6)..6.4.2)/((2k−1)!))  now in AP series first term=2  common difference=+2  T_r =2+(r−1)2→2r  2r=4k−2   hence r=2k−1  (N_r /D_r )=((2(2k−1)×2(2k−2)×..2(k+2)×2(k+1)×2(k)×2(k−1)×2(k−3)..2×(3)×2(2)×2(1))/((2k−1)!))  now how many 2 are multiplied in N_r ..  we have caculated  using AP series formula   that is r→  [r=2k−1]  so (N_r /D_r )=((2^(2k−1) ×(2k−1)(2k−2)×..(k+2)(k+1)(k)(k−1)..3.2.1)/((2k−1)))  =((2^(2k−1) ×(2k−1)!)/((2k−1)!))  =2^(2k−1)   =2^(n−1)   [n=2k we clnsidered]

$${look}\:{at}\:{the}\:{D}_{{r}} =\mathrm{1}.\mathrm{3}.\mathrm{5}....\left({n}−\mathrm{1}\right) \\ $$$${D}_{{r}} =\left({n}−\mathrm{1}\right)...\mathrm{5}.\mathrm{3}.\mathrm{1}\:\:\leftarrow{look}\:{even}\:{number}\:{are}\:{missing} \\ $$$${so}\:{D}_{{r}} =\left[\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)\left({n}−\mathrm{3}\right)\left({n}−\mathrm{4}\right)..\mathrm{6}.\mathrm{5}.\mathrm{4}.\mathrm{3}.\mathrm{2}.\mathrm{1}\right]×\frac{\mathrm{1}}{\left({n}−\mathrm{2}\right)\left({n}−\mathrm{4}\right)..\mathrm{6}.\mathrm{4}.\mathrm{2}} \\ $$$${here}\:{i}\:{have}\:{inserted}\:{even}\:{numbers}\:{and}\:{devided} \\ $$$${by}\:{same}\:{even}\:{numbers}\:{to}\:{keep}\:{the}\:{value}\:{of} \\ $$$${D}_{{r}} ={fixed} \\ $$$${D}_{{r}} =\frac{\mathrm{1}}{\left({n}−\mathrm{2}\right)\left({n}−\mathrm{4}\right)...\mathrm{6}.\mathrm{4}.\mathrm{2}}×\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)\left({n}−\mathrm{3}\right)..\mathrm{6}.\mathrm{5}.\mathrm{4}.\mathrm{3}.\mathrm{2}.\mathrm{1} \\ $$$${D}_{{r}} =\frac{\left({n}−\mathrm{1}\right)!}{\left({n}−\mathrm{2}\right)\left({n}−\mathrm{4}\right)..\mathrm{6}.\mathrm{4}.\mathrm{2}} \\ $$$${now} \\ $$$$\frac{{N}_{{r}} }{{D}_{{r}} }=\frac{{n}\left({n}+\mathrm{2}\right)\left({n}+\mathrm{4}\right)..\left(\mathrm{2}{n}−\mathrm{2}\right)}{\frac{\left({n}−\mathrm{1}\right)!}{\left({n}−\mathrm{2}\right)\left({n}−\mathrm{4}\right)..\mathrm{6}.\mathrm{4}.\mathrm{2}}} \\ $$$$\frac{{N}_{{r}} }{{D}_{{r}} }=\frac{\left(\mathrm{2}{n}−\mathrm{2}\right)\left(\mathrm{2}{n}−\mathrm{4}\right)...\left({n}+\mathrm{4}\right)\left({n}+\mathrm{2}\right){n}×\left({n}−\mathrm{2}\right)\left({n}−\mathrm{4}\right)\left({n}−\mathrm{6}\right)..\mathrm{6}.\mathrm{4}.\mathrm{2}}{\left({n}−\mathrm{1}\right)\centerdot} \\ $$$$ \\ $$$${let}\:{n}=\mathrm{2}{k}\:\: \\ $$$$\frac{{N}_{{r}} }{{D}_{{r}} }=\frac{\left(\mathrm{4}{k}−\mathrm{2}\right)\left(\mathrm{4}{k}−\mathrm{4}\right)..\left(\mathrm{2}{k}+\mathrm{4}\right)\left(\mathrm{2}{k}+\mathrm{2}\right)\left(\mathrm{2}{k}\right)\left(\mathrm{2}{k}−\mathrm{2}\right)\left(\mathrm{2}{k}−\mathrm{4}\right)\left(\mathrm{2}{k}−\mathrm{6}\right)..\mathrm{6}.\mathrm{4}.\mathrm{2}}{\left(\mathrm{2}{k}−\mathrm{1}\right)!} \\ $$$${now}\:{in}\:{AP}\:{series}\:{first}\:{term}=\mathrm{2} \\ $$$${common}\:{difference}=+\mathrm{2} \\ $$$${T}_{{r}} =\mathrm{2}+\left({r}−\mathrm{1}\right)\mathrm{2}\rightarrow\mathrm{2}{r} \\ $$$$\mathrm{2}{r}=\mathrm{4}{k}−\mathrm{2}\:\:\:{hence}\:{r}=\mathrm{2}{k}−\mathrm{1} \\ $$$$\frac{{N}_{{r}} }{{D}_{{r}} }=\frac{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)×\mathrm{2}\left(\mathrm{2}{k}−\mathrm{2}\right)×..\mathrm{2}\left({k}+\mathrm{2}\right)×\mathrm{2}\left({k}+\mathrm{1}\right)×\mathrm{2}\left({k}\right)×\mathrm{2}\left({k}−\mathrm{1}\right)×\mathrm{2}\left({k}−\mathrm{3}\right)..\mathrm{2}×\left(\mathrm{3}\right)×\mathrm{2}\left(\mathrm{2}\right)×\mathrm{2}\left(\mathrm{1}\right)}{\left(\mathrm{2}{k}−\mathrm{1}\right)!} \\ $$$${now}\:{how}\:{many}\:\mathrm{2}\:{are}\:{multiplied}\:{in}\:{N}_{{r}} .. \\ $$$${we}\:{have}\:{caculated}\:\:{using}\:{AP}\:{series}\:{formula} \\ $$$$\:{that}\:{is}\:{r}\rightarrow\:\:\left[{r}=\mathrm{2}{k}−\mathrm{1}\right] \\ $$$${so}\:\frac{{N}_{{r}} }{{D}_{{r}} }=\frac{\mathrm{2}^{\mathrm{2}{k}−\mathrm{1}} ×\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{2}{k}−\mathrm{2}\right)×..\left({k}+\mathrm{2}\right)\left({k}+\mathrm{1}\right)\left({k}\right)\left({k}−\mathrm{1}\right)..\mathrm{3}.\mathrm{2}.\mathrm{1}}{\left(\mathrm{2}{k}−\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{2}^{\mathrm{2}{k}−\mathrm{1}} ×\left(\mathrm{2}{k}−\mathrm{1}\right)!}{\left(\mathrm{2}{k}−\mathrm{1}\right)!} \\ $$$$=\mathrm{2}^{\mathrm{2}{k}−\mathrm{1}} \\ $$$$=\mathrm{2}^{{n}−\mathrm{1}} \:\:\left[{n}=\mathrm{2}{k}\:{we}\:{clnsidered}\right] \\ $$

Commented by Tawa1 last updated on 03/Apr/19

Wow. God bless you sir.

$$\mathrm{Wow}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com