Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 57404 by turbo msup by abdo last updated on 03/Apr/19

find lim_(x→0)  ((sin(π(√(cosx))))/x^2 )

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{sin}\left(\pi\sqrt{{cosx}}\right)}{{x}^{\mathrm{2}} } \\ $$

Commented by Smail last updated on 04/Apr/19

lim_(x→0) ((sin(π(√(cosx))))/x^2 )=lim_(x→0) (((sin(π(√(cosx))))′)/((x^2 )′))  =lim_(x→0) ((π×((−sinx)/(2(√(cosx))))×cos(π(√(cosx))))/(2x))  =lim_(x→0) −(π/4)×((sinx)/x)×((cos(π(√(cosx))))/(√(cosx)))  =((−π)/4)×1×((cos(π×(√1)))/(√1))=(π/4)

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{sin}\left(\pi\sqrt{{cosx}}\right)}{{x}^{\mathrm{2}} }=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\left({sin}\left(\pi\sqrt{{cosx}}\right)\right)'}{\left({x}^{\mathrm{2}} \right)'} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\pi×\frac{−{sinx}}{\mathrm{2}\sqrt{{cosx}}}×{cos}\left(\pi\sqrt{{cosx}}\right)}{\mathrm{2}{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {{lim}}−\frac{\pi}{\mathrm{4}}×\frac{{sinx}}{{x}}×\frac{{cos}\left(\pi\sqrt{{cosx}}\right)}{\sqrt{{cosx}}} \\ $$$$=\frac{−\pi}{\mathrm{4}}×\mathrm{1}×\frac{{cos}\left(\pi×\sqrt{\mathrm{1}}\right)}{\sqrt{\mathrm{1}}}=\frac{\pi}{\mathrm{4}} \\ $$

Commented by maxmathsup by imad last updated on 04/Apr/19

we have cosx ∼1−(x^2 /2) ⇒(√(cosx))∼(√(1−(x^2 /2)))∼−(x^2 /4) ⇒sin(π(√(cosx)))∼sin(−(π/4)x^2 )  ∼−(π/4)x^2  ⇒((sin(π(√(cosx))))/x^2 ) ∼−(π/4) ⇒lim_(x→0)    ((sin(π(√(cosx))))/x^2 ) =−(π/4)

$${we}\:{have}\:{cosx}\:\sim\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\sqrt{{cosx}}\sim\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}\sim−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:\Rightarrow{sin}\left(\pi\sqrt{{cosx}}\right)\sim{sin}\left(−\frac{\pi}{\mathrm{4}}{x}^{\mathrm{2}} \right) \\ $$$$\sim−\frac{\pi}{\mathrm{4}}{x}^{\mathrm{2}} \:\Rightarrow\frac{{sin}\left(\pi\sqrt{{cosx}}\right)}{{x}^{\mathrm{2}} }\:\sim−\frac{\pi}{\mathrm{4}}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{sin}\left(\pi\sqrt{{cosx}}\right)}{{x}^{\mathrm{2}} }\:=−\frac{\pi}{\mathrm{4}} \\ $$

Commented by Smail last updated on 04/Apr/19

(√(1−(x^2 /2)))≁−(x^2 /2)  near  0 because   for  x=0  (√(1−(0/2)))=1≁0

$$\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}\nsim−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\:{near}\:\:\mathrm{0}\:{because}\: \\ $$$${for}\:\:{x}=\mathrm{0}\:\:\sqrt{\mathrm{1}−\frac{\mathrm{0}}{\mathrm{2}}}=\mathrm{1}\nsim\mathrm{0} \\ $$

Commented by Smail last updated on 04/Apr/19

Commented by maxmathsup by imad last updated on 04/Apr/19

look sir i have written (√(1−(x^2 /2)))∼−(x^2 /4)  (x→0) because (√(1−u))∼1−(u/2) .

$${look}\:{sir}\:{i}\:{have}\:{written}\:\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}\sim−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:\:\left({x}\rightarrow\mathrm{0}\right)\:{because}\:\sqrt{\mathrm{1}−{u}}\sim\mathrm{1}−\frac{{u}}{\mathrm{2}}\:. \\ $$

Answered by kaivan.ahmadi last updated on 04/Apr/19

∼lim_(x→0) ((π(√(cosx)))/x^2 )  and hop  =lim_(x→0) ((π((−sinx)/(2(√(cosx)))))/(2x))∼lim_(x→0) ((−π)/(4(√(cosx))))=((−π)/4)

$$\sim{lim}_{{x}\rightarrow\mathrm{0}} \frac{\pi\sqrt{{cosx}}}{{x}^{\mathrm{2}} }\:\:{and}\:{hop} \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \frac{\pi\frac{−{sinx}}{\mathrm{2}\sqrt{{cosx}}}}{\mathrm{2}{x}}\sim{lim}_{{x}\rightarrow\mathrm{0}} \frac{−\pi}{\mathrm{4}\sqrt{{cosx}}}=\frac{−\pi}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com