Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 57409 by Abdo msup. last updated on 03/Apr/19

let S_n =Σ_(k=1) ^(2n+1)  (1/(√(n^2  +k)))  calculste lim_(n→+∞)  S_n

letSn=k=12n+11n2+kcalculstelimn+Sn

Commented by maxmathsup by imad last updated on 10/Apr/19

we have      (1/(√(n^2  +k))) =(1/(n(√(1+(k/n^2 ))))) =(((1+(k/n^2 ))^(−(1/2)) )/n)  but we have (1+u)^α  =1+α u +((α(α−1))/2) u^2  +0(u^3 ) ⇒  (1+α)^(−(1/2))  =1−(α/2) +(((−(1/2))(−(1/2)−1))/2) α^(2 )  +o(α^3 )  =1−(α/2) +(3/8) α^2  +0(α^3 ) ⇒1−(α/2) ≤ (1+α)^(−(1/2))  ≤1−(α/2) +(3/8) α^2  ⇒  1−(k/(2n^2 )) ≤ (1+(k/n^2 ))^(−(1/2)) ≤1−(k/(2n^2 )) +(3/8) (k^2 /n^4 ) ⇒(1/n) −(k/(2n^3 )) ≤(1/n)(1+(k/n^2 ))^(−(1/2)) ≤  (1/n) −(k/(2n^3 )) +(3/8) (k^2 /n^5 ) ⇒Σ_(k=1) ^(2n+1) ((1/n) −(k/(2n^3 ))) ≤ S_n ≤Σ_(k=1) ^(2n+1) ((1/n) −(k/(2n^3 )) +(3/8) (k^2 /n^5 )) ⇒  2−(1/(2n^3 )) Σ_(k=1) ^(2n+1)  k ≤ S_n ≤ 2−(1/(2n^3 )) Σ_(k=1) ^(2n+1) k  +(3/(8n^5 )) Σ_(k=1) ^(2n+1)  k^2   2−(1/(2n^3 )) (((2n+1)(2n+2))/2) ≤ S_n ≤ 2−(1/(2n^3 )) (((2n+1)(2n+2))/2) +(3/(8n^5 )) (((2n+1)(2n+2)(4n+2+1))/6)  ⇒ 2−(((n+1)(2n+1))/(2n^3 )) ≤ S_n ≤ 2−(((n+1)(2n+1))/(2n^3 )) +(1/(8n^5 )) (n+1)(2n+1)(4n+3)   ⇒ lim_(n→+∞)  S_n =2 .

wehave1n2+k=1n1+kn2=(1+kn2)12nbutwehave(1+u)α=1+αu+α(α1)2u2+0(u3)(1+α)12=1α2+(12)(121)2α2+o(α3)=1α2+38α2+0(α3)1α2(1+α)121α2+38α21k2n2(1+kn2)121k2n2+38k2n41nk2n31n(1+kn2)121nk2n3+38k2n5k=12n+1(1nk2n3)Snk=12n+1(1nk2n3+38k2n5)212n3k=12n+1kSn212n3k=12n+1k+38n5k=12n+1k2212n3(2n+1)(2n+2)2Sn212n3(2n+1)(2n+2)2+38n5(2n+1)(2n+2)(4n+2+1)62(n+1)(2n+1)2n3Sn2(n+1)(2n+1)2n3+18n5(n+1)(2n+1)(4n+3)limn+Sn=2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com