Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 57412 by Abdo msup. last updated on 03/Apr/19

let u_n =1 +(1/(√2)) +(1/(√3)) +...+(1/(√n))  prove that (u_n ) is divdrgente.

$${let}\:{u}_{{n}} =\mathrm{1}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\:+...+\frac{\mathrm{1}}{\sqrt{{n}}} \\ $$$${prove}\:{that}\:\left({u}_{{n}} \right)\:{is}\:{divdrgente}. \\ $$

Commented by maxmathsup by imad last updated on 07/Apr/19

let f(x)=(√x)   ∃c ∈]k,k+1[   /f(k+1)−f(k)=(k+1−k)f^′ (c)⇒(√(k+1)) −(√k)=(1/(2(√c)))  we have    k<c<k+1 ⇒(√k)<(√c)<(√(k+1)) ⇒(1/(2(√c))) <(1/(2(√k))) ⇒  (1/(2(√k))) >(√(k+1))−(√k) ⇒ Σ_(k=1) ^n  (1/(√k)) >2 Σ_(k=1) ^n  {(√(k+1))−(√k)) ⇒  U_(n )  > 2{(√(n+1))−1} →+∞ (n→+∞) ⇒U_n  diverges and lim_(n→+∞) U_n =+∞ .

$$\left.{let}\:{f}\left({x}\right)=\sqrt{{x}}\:\:\:\exists{c}\:\in\right]{k},{k}+\mathrm{1}\left[\:\:\:/{f}\left({k}+\mathrm{1}\right)−{f}\left({k}\right)=\left({k}+\mathrm{1}−{k}\right){f}^{'} \left({c}\right)\Rightarrow\sqrt{{k}+\mathrm{1}}\:−\sqrt{{k}}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{c}}}\right. \\ $$$${we}\:{have}\:\:\:\:{k}<{c}<{k}+\mathrm{1}\:\Rightarrow\sqrt{{k}}<\sqrt{{c}}<\sqrt{{k}+\mathrm{1}}\:\Rightarrow\frac{\mathrm{1}}{\mathrm{2}\sqrt{{c}}}\:<\frac{\mathrm{1}}{\mathrm{2}\sqrt{{k}}}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\sqrt{{k}}}\:>\sqrt{{k}+\mathrm{1}}−\sqrt{{k}}\:\Rightarrow\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\sqrt{{k}}}\:>\mathrm{2}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\left\{\sqrt{{k}+\mathrm{1}}−\sqrt{{k}}\right)\:\Rightarrow \\ $$$${U}_{{n}\:} \:>\:\mathrm{2}\left\{\sqrt{{n}+\mathrm{1}}−\mathrm{1}\right\}\:\rightarrow+\infty\:\left({n}\rightarrow+\infty\right)\:\Rightarrow{U}_{{n}} \:{diverges}\:{and}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} =+\infty\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com