All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 57419 by Abdo msup. last updated on 03/Apr/19
find∫01(x+1)ln(x+1+x2)dx
Commented by maxmathsup by imad last updated on 07/Apr/19
letA=∫01(x+1)ln(x+1+x2)dxbypartsu′=x+1andv=ln(x+1+x2)⇒A=[(x22+x)ln(x+1+x2)]01−∫01(x22+x)dx1+x2=32ln(1+2)−12∫01x2+2x1+x2dx∫01x2+2x1+x2dx=∫01x2+1+2x−11+x2dx=∫01x2+1dx+2∫01x1+x2dx−∫01dx1+x2∫011+x2dx=x=sh(t)∫0ln(1+2)ch(t)ch(t)dt=∫0ln(1+2)1+ch(2t)2dt=12ln(1+2)+14[sh(2t)]0ln(1+2)=12ln(1+2)+14[e2t−e−2t2]0ln(1+2)=12ln(1+2)+18{(1+2)2−1(1+2)2}.∫01x1+x2dx=[1+x2]01=2−1∫01dx1+x2=[ln(x+1+x2]01=ln(1+2)⇒A=32ln(1+2)−14ln(1+2)−116{3+22−13+22}−2+1+12ln(1+2)A=74ln(1+2)−116{3+22−13+22}+1−2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com