All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 5742 by Rasheed Soomro last updated on 26/May/16
∙DetermineSS=a2+ar(a+r)+ar2(a+2r)+...+arn−1{a+(n−1)r}.
Answered by Yozzii last updated on 26/May/16
S=a2+ar(a+r)+ar2(a+2r)+ar3(a+3r)...+arn−1{a+(n−1)r}rS=a2r+ar2(a+r)+ar3(a+2r)+ar4(a+4r)+...+arn−1(a+(n−2)r)+arn(a+(n−1)r)rS=0+(a2r)+0+(a2r2)+0+(ar3)+0+(a2r3)+(2ar4)+a2r4+4ar5+...+(a2rn−1)+(n−2)arn+a2rn+arn+1(n−1)S=a2+(a2r)+ar2+(a2r2)+(2ar3)+(a2r3)+(3ar4)+...+(a2rn−1)+(n−1)arn⇒(r−1)S=−a2−ar2−ar3−ar4−...−arn−arn+1+a2rn+narn+1(r−1)S=a2rn−a2−ar2(1+r+r2+...+rn−2+rn−1)+narn+1(r−1)S=a2(rn−1)+narn+1−ar2(rn−1)(r−1)S=rn−1r−1(a2−ar2r−1)+narn+1r−1S=narn+1r−1+a(rn−1)(a(r−1)−r2)(r−1)2S=narn+1+a2(rn−1)r−1−ar2(rn−1)(r−1)2Ifr<1Scanbedivergente.gletr=−56.
Commented by Rasheed Soomro last updated on 26/May/16
ThankS!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com