Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 5742 by Rasheed Soomro last updated on 26/May/16

•Determine S  S=a^2 +ar(a+r)+ar^2 (a+2r)+...+ar^(n−1) {a+(n−1) r}.

DetermineSS=a2+ar(a+r)+ar2(a+2r)+...+arn1{a+(n1)r}.

Answered by Yozzii last updated on 26/May/16

S=a^2 +ar(a+r)+ar^2 (a+2r)+ar^3 (a+3r)...+ar^(n−1) {a+(n−1)r}  rS=a^2 r+ar^2 (a+r)+ar^3 (a+2r)+ar^4 (a+4r)+...+ar^(n−1) (a+(n−2)r)+ar^n (a+(n−1)r)  rS=0+(a^2 r)+0+(a^2 r^2 )+0+(ar^3 )+0+(a^2 r^3 )+(2ar^4 )+a^2 r^4 +4ar^5 +...+(a^2 r^(n−1) )+(n−2)ar^n +a^2 r^n +ar^(n+1) (n−1)    S=a^2 +(a^2 r)+ar^2 +(a^2 r^2 )+(2ar^3 )+(a^2 r^3 )+(3ar^4 )+...+(a^2 r^(n−1) )+(n−1)ar^n   ⇒(r−1)S=−a^2 −ar^2 −ar^3 −ar^4 −...−ar^n −ar^(n+1) +a^2 r^n +nar^(n+1)   (r−1)S=a^2 r^n −a^2 −ar^2 (1+r+r^2 +...+r^(n−2) +r^(n−1) )+nar^(n+1)   (r−1)S=a^2 (r^n −1)+nar^(n+1) −((ar^2 (r^n −1))/((r−1)))  S=((r^n −1)/(r−1))(a^2 −((ar^2 )/(r−1)))+((nar^(n+1) )/(r−1))  S=((nar^(n+1) )/(r−1))+((a(r^n −1)(a(r−1)−r^2 ))/((r−1)^2 ))  S=((nar^(n+1) +a^2 (r^n −1))/(r−1))−((ar^2 (r^n −1))/((r−1)^2 ))  If r<1 S can be divergent e.g let r=−56.

S=a2+ar(a+r)+ar2(a+2r)+ar3(a+3r)...+arn1{a+(n1)r}rS=a2r+ar2(a+r)+ar3(a+2r)+ar4(a+4r)+...+arn1(a+(n2)r)+arn(a+(n1)r)rS=0+(a2r)+0+(a2r2)+0+(ar3)+0+(a2r3)+(2ar4)+a2r4+4ar5+...+(a2rn1)+(n2)arn+a2rn+arn+1(n1)S=a2+(a2r)+ar2+(a2r2)+(2ar3)+(a2r3)+(3ar4)+...+(a2rn1)+(n1)arn(r1)S=a2ar2ar3ar4...arnarn+1+a2rn+narn+1(r1)S=a2rna2ar2(1+r+r2+...+rn2+rn1)+narn+1(r1)S=a2(rn1)+narn+1ar2(rn1)(r1)S=rn1r1(a2ar2r1)+narn+1r1S=narn+1r1+a(rn1)(a(r1)r2)(r1)2S=narn+1+a2(rn1)r1ar2(rn1)(r1)2Ifr<1Scanbedivergente.gletr=56.

Commented by Rasheed Soomro last updated on 26/May/16

ThankS!

ThankS!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com