Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 57420 by Abdo msup. last updated on 03/Apr/19

let J(x)=∫_0 ^x     (t^2 /((√(t+1)) +(√(t+4))))dt  find a explicit form of J(x)

letJ(x)=0xt2t+1+t+4dtfindaexplicitformofJ(x)

Commented by maxmathsup by imad last updated on 05/Apr/19

we have J(x)=∫_0 ^x  ((t^2 ((√(t+4))−(√(t+1))))/(t+4−t−1)) dt =(1/3) ∫_0 ^x t^2 (√(t+4))dt −(1/3) ∫_0 ^x t^2 (√(t+1))dt  changement (√(t+4))=u give t+4 =u^2  ⇒∫_0 ^x t^2 (√(t+4))dt =∫_2^  ^(√(x+4)) (u^2 −4)^2 u (2u)du  =2 ∫_2 ^(√(x+4)) u^2 (u^4 −8u^2  +16)du =2 ∫_2 ^(√(x+4)) (u^6 −8u^4  +16u^2 )du  =2 [(u^7 /7) −(8/5)u^5  +((16)/3)u^3 ]_2 ^(√(x+4)) =2{(1/7)(x+4)^(7/2)  −(8/5)(x+4)^(5/2)  +((16)/3)(x+4)^(3/2)   −(2^7 /7)+(8/5) 2^5  −((16)/3) 2^3 }   also changement (√(t+1))=u give t+1 =u^2  ⇒  ∫_0 ^x t^2 (√(t+1))dt = ∫_1 ^(√(x+1)) (u^2 −1)^2 u (2u)du =2 ∫_1 ^(√(x+1)) u^2 (u^4 −2u^2  +1)du  =2 ∫_1 ^(√(x+1)) (u^6  −2u^4  +u^2 )du =2[ (u^7 /7) −(2/5)u^5  +(u^3 /3)]_1 ^(√(x+1))   =2{(1/7)(x+1)^(7/2)  −(2/5)(x+1)^(5/2)  +(1/3)(x+1)^(3/2) −(1/7) +(2/5) −(1/3)}  the value of J(x)is determined..

wehaveJ(x)=0xt2(t+4t+1)t+4t1dt=130xt2t+4dt130xt2t+1dtchangementt+4=ugivet+4=u20xt2t+4dt=2x+4(u24)2u(2u)du=22x+4u2(u48u2+16)du=22x+4(u68u4+16u2)du=2[u7785u5+163u3]2x+4=2{17(x+4)7285(x+4)52+163(x+4)32277+852516323}alsochangementt+1=ugivet+1=u20xt2t+1dt=1x+1(u21)2u(2u)du=21x+1u2(u42u2+1)du=21x+1(u62u4+u2)du=2[u7725u5+u33]1x+1=2{17(x+1)7225(x+1)52+13(x+1)3217+2513}thevalueofJ(x)isdetermined..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com