All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 57420 by Abdo msup. last updated on 03/Apr/19
letJ(x)=∫0xt2t+1+t+4dtfindaexplicitformofJ(x)
Commented by maxmathsup by imad last updated on 05/Apr/19
wehaveJ(x)=∫0xt2(t+4−t+1)t+4−t−1dt=13∫0xt2t+4dt−13∫0xt2t+1dtchangementt+4=ugivet+4=u2⇒∫0xt2t+4dt=∫2x+4(u2−4)2u(2u)du=2∫2x+4u2(u4−8u2+16)du=2∫2x+4(u6−8u4+16u2)du=2[u77−85u5+163u3]2x+4=2{17(x+4)72−85(x+4)52+163(x+4)32−277+8525−16323}alsochangementt+1=ugivet+1=u2⇒∫0xt2t+1dt=∫1x+1(u2−1)2u(2u)du=2∫1x+1u2(u4−2u2+1)du=2∫1x+1(u6−2u4+u2)du=2[u77−25u5+u33]1x+1=2{17(x+1)72−25(x+1)52+13(x+1)32−17+25−13}thevalueofJ(x)isdetermined..
Terms of Service
Privacy Policy
Contact: info@tinkutara.com