Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 5744 by Rasheed Soomro last updated on 26/May/16

If  0< r<1, is S  convergent in the following ?  S=a^2 +ar(a+r)+ar^2 (a+2r)+.....  Determine S   if  it′s convergent.

$${If}\:\:\mathrm{0}<\:{r}<\mathrm{1},\:{is}\:{S}\:\:{convergent}\:{in}\:{the}\:{following}\:? \\ $$ $${S}={a}^{\mathrm{2}} +{ar}\left({a}+{r}\right)+{ar}^{\mathrm{2}} \left({a}+\mathrm{2}{r}\right)+..... \\ $$ $${Determine}\:{S}\:\:\:{if}\:\:{it}'{s}\:{convergent}. \\ $$

Commented byFilupSmith last updated on 26/May/16

Yes. if r<1,   r=(1/n)  (1/n)>(1/n^2 )>...  each terms becomes smaller  −−−−−−−−−−  S=a^2 +ar(a+r)+ar^2 (a+2r)+...  S=a^2 +aΣ_(i=1) ^m r^n (a+nr)  T=Σ_(i=1) ^m r^n (a+nr)  T=r(a+r)+r^2 (a+2r)+r^3 (a+3r)+...  T=ar+r^2 +ar^2 +2r^3 +ar^3 +3r^4 +...  T=(ar+ar^2 +...+ar^m )+(r^2 +2r^3 +3r^4 +...+(m−1)r^m )  T=a(r+r^2 +...+r^m )+(r^2 +2r^3 +3r^4 +...+(m−1)r^m )  T=aΣ_(i=1) ^m r^i +rΣ_(i=1) ^(m−1) ir^i   aΣ_(i=1) ^m r^i =a(((r(1−r^m ))/(1−r)))                r<1    S=a^2 +aΣ_(i=1) ^m r^n (a+nr)  S=a^2 +T  ∴ S=a^2 +((ar(1−r^m ))/(1−r))+rΣ_(i=1) ^m ir^i ,     r<1  (continue)

$$\mathrm{Yes}.\:\mathrm{if}\:{r}<\mathrm{1},\:\:\:{r}=\frac{\mathrm{1}}{{n}} \\ $$ $$\frac{\mathrm{1}}{{n}}>\frac{\mathrm{1}}{{n}^{\mathrm{2}} }>... \\ $$ $$\mathrm{each}\:\mathrm{terms}\:\mathrm{becomes}\:\mathrm{smaller} \\ $$ $$−−−−−−−−−− \\ $$ $${S}={a}^{\mathrm{2}} +{ar}\left({a}+{r}\right)+{ar}^{\mathrm{2}} \left({a}+\mathrm{2}{r}\right)+... \\ $$ $${S}={a}^{\mathrm{2}} +{a}\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}{r}^{{n}} \left({a}+{nr}\right) \\ $$ $${T}=\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}{r}^{{n}} \left({a}+{nr}\right) \\ $$ $${T}={r}\left({a}+{r}\right)+{r}^{\mathrm{2}} \left({a}+\mathrm{2}{r}\right)+{r}^{\mathrm{3}} \left({a}+\mathrm{3}{r}\right)+... \\ $$ $${T}={ar}+{r}^{\mathrm{2}} +{ar}^{\mathrm{2}} +\mathrm{2}{r}^{\mathrm{3}} +{ar}^{\mathrm{3}} +\mathrm{3}{r}^{\mathrm{4}} +... \\ $$ $${T}=\left({ar}+{ar}^{\mathrm{2}} +...+{ar}^{{m}} \right)+\left({r}^{\mathrm{2}} +\mathrm{2}{r}^{\mathrm{3}} +\mathrm{3}{r}^{\mathrm{4}} +...+\left({m}−\mathrm{1}\right){r}^{{m}} \right) \\ $$ $${T}={a}\left({r}+{r}^{\mathrm{2}} +...+{r}^{{m}} \right)+\left({r}^{\mathrm{2}} +\mathrm{2}{r}^{\mathrm{3}} +\mathrm{3}{r}^{\mathrm{4}} +...+\left({m}−\mathrm{1}\right){r}^{{m}} \right) \\ $$ $${T}={a}\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}{r}^{{i}} +{r}\underset{{i}=\mathrm{1}} {\overset{{m}−\mathrm{1}} {\sum}}{ir}^{{i}} \\ $$ $${a}\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}{r}^{{i}} ={a}\left(\frac{{r}\left(\mathrm{1}−{r}^{{m}} \right)}{\mathrm{1}−{r}}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{r}<\mathrm{1} \\ $$ $$ \\ $$ $${S}={a}^{\mathrm{2}} +{a}\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}{r}^{{n}} \left({a}+{nr}\right) \\ $$ $${S}={a}^{\mathrm{2}} +{T} \\ $$ $$\therefore\:{S}={a}^{\mathrm{2}} +\frac{{ar}\left(\mathrm{1}−{r}^{{m}} \right)}{\mathrm{1}−{r}}+{r}\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}{ir}^{{i}} ,\:\:\:\:\:{r}<\mathrm{1} \\ $$ $$\left(\mathrm{continue}\right) \\ $$

Commented byFilupSmith last updated on 26/May/16

I am sure my working is correct, but  I am unsure how to continue

$$\mathrm{I}\:\mathrm{am}\:\mathrm{sure}\:\mathrm{my}\:\mathrm{working}\:\mathrm{is}\:\mathrm{correct},\:\mathrm{but} \\ $$ $$\mathrm{I}\:\mathrm{am}\:\mathrm{unsure}\:\mathrm{how}\:\mathrm{to}\:\mathrm{continue} \\ $$

Commented byRasheed Soomro last updated on 26/May/16

I didn′t consider about the solution.However I want to share  with you how this question & Q#5742 came into my mind .    I have created these  questions  as follows:  Consider an A.P. and a G.P.  having first term same  (say a) and  equal common difference and  common ratio (say r).  a, a+r, a+2r....  &    a,ar,ar^2 ....  Now consider a rectangle whose dimentions  are corresponding terms of above sequence.  All such rectangles form a sequence ...Sum  of all rectangles....

$$\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{consider}\:\mathrm{about}\:\mathrm{the}\:\mathrm{solution}.\mathrm{However}\:\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{share} \\ $$ $$\mathrm{with}\:\mathrm{you}\:\mathrm{how}\:\mathrm{this}\:\mathrm{question}\:\&\:{Q}#\mathrm{5742}\:\mathrm{came}\:\mathrm{into}\:\mathrm{my}\:\mathrm{mind}\:. \\ $$ $$ \\ $$ $$\mathrm{I}\:\mathrm{have}\:\mathrm{created}\:\mathrm{these}\:\:\mathrm{questions}\:\:\mathrm{as}\:\mathrm{follows}: \\ $$ $$\mathrm{Consider}\:\mathrm{an}\:\mathrm{A}.\mathrm{P}.\:\mathrm{and}\:\mathrm{a}\:\mathrm{G}.\mathrm{P}.\:\:\mathrm{having}\:\mathrm{first}\:\mathrm{term}\:\mathrm{same} \\ $$ $$\left(\mathrm{say}\:{a}\right)\:\mathrm{and}\:\:\mathrm{equal}\:\mathrm{common}\:\mathrm{difference}\:\mathrm{and} \\ $$ $$\mathrm{common}\:\mathrm{ratio}\:\left(\mathrm{say}\:{r}\right). \\ $$ $${a},\:{a}+{r},\:{a}+\mathrm{2}{r}....\:\:\&\:\:\:\:{a},{ar},{ar}^{\mathrm{2}} .... \\ $$ $$\mathrm{Now}\:\mathrm{consider}\:\mathrm{a}\:\mathrm{rectangle}\:\mathrm{whose}\:\mathrm{dimentions} \\ $$ $$\mathrm{are}\:\mathrm{corresponding}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{above}\:\mathrm{sequence}. \\ $$ $$\mathrm{All}\:\mathrm{such}\:\mathrm{rectangles}\:\mathrm{form}\:\mathrm{a}\:\mathrm{sequence}\:...\mathrm{Sum} \\ $$ $$\mathrm{of}\:\mathrm{all}\:\mathrm{rectangles}.... \\ $$ $$ \\ $$

Commented byFilupSmith last updated on 26/May/16

I see. I love doing these problems, also.  Especially fractal−like shapes.

$$\mathrm{I}\:\mathrm{see}.\:\mathrm{I}\:\mathrm{love}\:\mathrm{doing}\:\mathrm{these}\:\mathrm{problems},\:\mathrm{also}. \\ $$ $$\mathrm{Especially}\:\mathrm{fractal}−\mathrm{like}\:\mathrm{shapes}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com